File Systems 1

Files and File Systems

e files: persistent, named data objects
— data consists of a sequence of numbered bytes

— aternatively, afile may have some interna structure, e.g., a data may
consist of sequence of numbered records

— file may change size over time

— file has associated meta-data (attributes), in addition to the file name

*x examples:. owner, access controls, file type, creation and access
timestamps

e file system: acollection of files which share a common name space
— alowsfilesto be created, destroyed, renamed, . ..

CS350 Operating Systems Fall 2003

File Systems 2

File Interface

e oOpen, close

— open returns afile identifier (or handle or descriptor), which isused in
subsequent operations to identify the file. (Why isthis done?)

e read, write

— must specify which file to read, which part of the file to read, and where to
put the data that has been read (similar for write).

— often, file position isimplicit (why?)
o seek

e Qet/set file attributes, e.g., Unix f st at, chnod

CS350 Operating Systems Fall 2003

File Systems 3
File Read
fileoffset (implicit)
vaddr
length
length
virtual address
Space
file
read(filel D vaddr, |ength)
CS350 Operating Systems Fall 2003

File Systems 4

File Position

e may be associated with the file, with a process, or with afile descriptor (Unix
style)
e read and write operations
— start from the current file position

— update the current file position
e this makes sequental file 1/O easy for an application to request

e for non-sequental (random) file /O, use:
— seek, to adjust file position before reading or writing
— apositioned read or write operation, e.g., Unix pread, pwite:
pread(fileld,vaddr,|length,fil ePosition)

CS350 Operating Systems Fall 2003

File Systems 5

Sequential File Reading Example (Unix)

char buf[512];
int i1,
int f = open("nyfile", O RDONLY);
for(i=0;i<100;i++) {
read(f, (void *)buf, 512);
}

cl ose(f);

Read thefirst 100 x 512 bytes of afile, 512 bytes at atime.

CS350 Operating Systems Fall 2003

File Systems 6

File Reading Example Using Seek (Unix)

char buf[512];
Int 1 ;
Int f = open("nyfile", O RDONLY);
| seek(f, 99*512, SEEK SET);
for(i=0;i<100;i++) {

read(f, (void *)buf, 512);

| seek(f,-1024, SEEK CUR);
}

cl ose(f);

Read the first 100 x 512 bytes of a file, 512 bytes at a time, in
reverse order.

CS350 Operating Systems Fall 2003

File Systems 7

File Reading Example Using Positioned Read

char buf[512];
Int 1 ;
Int f = open("nyfile", O RDONLY);
for(i=0;i<50;i+=2) {

pread(f, (void *)buf,512,1*512);
t

cl ose(f);

Read every second 512 byte chunk of a file, until 50 have been
read.

CS350 Operating Systems Fall 2003

File Systems 8

File Names

e flat namespace

— file names are simple strings

e hierarchical namespace
— directories (folders) can be used to organize files and/or other directories
— directory inclusion graph isatree

— pathname: file or directory isidentified by a path in the tree

Unix: / hone/ knsal em cour ses/ cs350/ notes/fil esys. ps
Windows: \ knsal em ¢s350\ schedul e. t xt

CS350 Operating Systems Fall 2003

File Systems 9

Hierarchical Namespace Example

@ = directory

= file

CS350 Operating Systems Fall 2003

File Systems 10

Acyclic File Namespaces

e directory inclusion graph can be a (rooted) DAG

e alowsfiles/directoriesto have more than one pathname
— Increased flexibility for file sharing and file organization

— file removal and some other file system operations are more complicated
e examples:

Rooted Acyclic Namespace An Unrooted DAG

proj.cc

CS350 Operating Systems Fall 2003

File Systems 11

General File Namespaces

o e NO restriction on inclusion graph (except perhaps that
a it should have a designated root node)
® - e maximum flexibility
b C e additional complications, e.g.:
o — — reference counts are no longer sufficient for im-
plementing file deletion
d

— pathnames can have an infinite number of compo-
nents

CS350 Operating Systems Fall 2003

File Systems 12

File Links

e typically, anew file or directory islinked to asingle “parent” directory when
It is created. This gives a hierarchical namespace.

e another mechanism can then be used to create additional linksto existing files
or directories, introducing non-hierarchical structure in the namespace.
e hard links
— “first class’ links, like the original link to afile
— referential integrity is maintained (no “dangling” hard links)
— scope usually restricted to asingle file system
— Unix: hard links can be made to files, but not to directories. This
restriction is sufficient to avoid cycles. (Why?)
e soft links (a.k.a. “symbolic links’, “shortcuts’)
— referential integrity is not maintained

— flexible: may be allowed to span file systems, may link to directories and
(possibly) create cycles

CS350 Operating Systems Fall 2003

File Systems 13

Hard Link Example (Part 1)

link(/y/k/g, /z/m)

CS350 Operating Systems Fall 2003

File Systems 14

Hard Link Example (Part 2)

link(/y/k/g, /z/m)
o unlink(/y/k/g)

CS350 Operating Systems Fall 2003

File Systems 15

Soft Link Example (Part 1)

symlink(/y/k/qg, /z/m)

CS350 Operating Systems Fall 2003

File Systems 16

Soft Link Example (Part 2)

e symlink(/y/k/g, /z/m)

7

- \ unlink(/y/k/g)

"dangling" soft link

CS350 Operating Systems Fall 2003

File Systems

17

Multiple File Systems

e it isnot uncommon for a system to have multiple file systems
e some kind of global file namespace is required

e two examples:

DOS: usetwo-part file names: file system name,pathname
— example: C:. \ knsal eml ¢s350\ schedul e. t xt
Unix: merge file graphs into a single graph
— Unix nount system call doesthis

CS350 Operating Systems

Fall 2003

File Systems 18

Unix mount Example

"root" file system file system X

CS350 Operating Systems Fall 2003

File Systems

19

e Space management

File System Implementation

e fileindexing (how to locate file data and meta-data)

e directories

e links

e buffering, in-memory data structures

e persistence

CS350

Operating Systems

Fall 2003

File Systems 20

Space Allocation

e space may be allocated in fixed-size chunks, or in chuncks of varying size
o fixed-size chunks

— simple space management

— internal fragmentation

e Vvariable-size chunks

— external fragmentation

fixed—size allocation

variable—size allocation

CS350 Operating Systems Fall 2003

File Systems 21

Space Allocation (continued)

e differences between primary and secondary memory
— larger transfers are cheaper (per byte) than smaller transfers
— sequential I/O is faster than random 1/O

e both of these suggest that space should be allocated to files in large chunks,
sometimes calledxtents

CS350 Operating Systems Fall 2003

File Systems 22

File Indexing

¢ in general, a file will require more than one chunk of allocated space (extent)
e this is especially true because files can grow

e how to find all of a file’s data?
chaining:
— each chunk includes a pointer to the next chunk
— OK for sequential access, poor for random access

external chaining: DOS file access table (FAT), for example
— like chaining, but the chain is kept in an external structure

per-file index: Unix i-node and NachOS FileHeader, for example
— for each file, maintain a table of pointers to the file’s blocks or extents

CS350 Operating Systems Fall 2003

File Systems 23

Chaining

CS350 Operating Systems Fall 2003

File Systems 24

External Chaining (File Access Table)

T S~ external chain
[" T =P T T T I T T RElE] (file access table)

CS350 Operating Systems Fall 2003

File Systems 25

Per-File Indexing

CS350 Operating Systems Fall 2003

File Systems 26

File Meta-Data and Other Information

e Where to store file meta-data?
— iImmediately preceding the file data
— with the file index (if per-file indexing is being used)

— with the directory entry for the file
x this is a problem if a file can have multiple names, and thus multiple

directory entries

CS350 Operating Systems Fall 2003

File Systems 27

Unix i-nodes

e an i-node is a particular implementation of a per-file index

e each i-node is uniquely identified by an i-number, which determines its
physical location on the disk
e an i-node is a fixed size record containing:

file attribute values
— file type
— file owner and group
— access controls
— creation, reference and update timestamps
— file size

direct block pointers: approximately 10 of these
single indirect block pointer
double indirect block pointer

triple indirect block pointer

CS350 Operating Systems Fall 2003

File Systems 28
I-node Diagram
—node (not to scale!) data blocks
attribute values
direct
direct °
direct °
double indirect >l
triple indirect “\l
/ Y
- [
\\ 4
indirect blocks
CS350 Operating Systems Fall 2003

File Systems 29

NachOS FileHeader

#define NunDirect ((SectorSize-2*sizeof(int))/sizeof(int))
cl ass Fil eHeader {
publ i c:
[/ methods here
private:
| nt nunByt es; [l file size in bytes
I nt nunBectors; // file size Iin sectors
| nt dataSectors[NunDirect]; // direct pointers

CS350 Operating Systems Fall 2003

File Systems 30

Directories

e A directory consists of a set of entries, where each entry is arecord that
Includes:

— afile name (component of a path name)

— afile“locator”
« |ocation of the first block of thefile, if chaining or external chaining is

used
+ location of the file index, if per-file indexing is being used
e A directory can be implemented like any other file, except:

— Interface should allow reading of records (can be provided by a special
system call or an library)

— file should not be writable directly by application programs

— directory records are updated by the kernel asfiles are created and
destroyed

CS350 Operating Systems Fall 2003

File Systems 31

Implementing Hard Links (Unix)

e hard links are ssimply directory entries

e for example, consider:
link(/y/klig,/zlm

e to implement this:;

— create anew entry in directory / z

x file namein new entry ism
« file locator (i-number) in the new entry is the same as the i-number for

entry g indirectory / y/ k

CS350 Operating Systems Fall 2003

File Systems 32

Implementing Soft Links (Unix)

e soft links are implemented as a special type of file

e for example, consider:
symink(/y/klig,/zIlm

e to implement this:
— create anew symlink file

— add anew entry indirectory / z

x file namein new entry ism
x 1-number in the new entry is the i-number of the new symlink file

— gtore the pathname string “/y/k/g” as the contents of the new symlink file

e change the behaviour of the open system call so that when the symlink fileis
encountered during open(/ z/ m , thefile/ y/ k/ g will be opened instead.

CS350 Operating Systems Fall 2003

File Systems 33

File System Meta-Data

o file system must record:
— location of file indexes or file allocation table
— location of freelist(s) or free space index
— file system parameters, e.g., block size

— file system identifier and other attributes

e example: Unix superblock
— located at fixed, predefined location(s) on the disk

e example: NachOS free space bitmap and directory files

— headersfor these files are located in disk sectors 0 and 1

CS350 Operating Systems Fall 2003

File Systems 34
Main Memory Data Structures
Primary Memory (volatile)
i 4
per process system open file table block buffer cache
open file tables :\ (cached copies of blocks)
0=
. a1
21 | 4
g e R
2 ™ ~=
3] cachedi-nodes | '~ -
data blocks, index blocks, i—nodes, etc.
Secondary Memory (persistent)
CS350 Operating Systems Fall 2003

File Systems 35

A Simple Exercise

e Walk through the steps that the file system must take to implement Cpen.
— which data structures (from the previous slide) are updated?

— how much disk 1/O isinvolved?

CS350 Operating Systems Fall 2003

File Systems 36

Problems Caused by Failures

e asinglelogical file system operation may reguire several disk 1/O operations

e example: deleting afile
— remove entry from directory
— remove file index (i-node) from i-node table
— mark file's data blocks free in free space index

e what if, because afailure, some but not all of these changes are reflected on
the disk?

CS350 Operating Systems Fall 2003

File Systems 37

Fault Tolerance

e special-purpose consistency checkers (e.g., Unix f sck in Berkeley FFS,
Linux ext2)

— runs after a crash, before normal operations resume

— find and attempt to repair inconsistent file system data structures, e.qg.:
« file with no directory entry

x free space that is not marked as free
e journaling (e.g., Veritas, NTFS, Linux ext3)

— record file system meta-data changes in ajournal (log), so that sequences
of changes can be written to disk in asingle operation

— after changes have been journaled, update the disk data structures
(write-ahead logging)

— after afailure, redo journaled updates in case they were not done before
the failure

CS350 Operating Systems Fall 2003

