File Systems 1

Files and File Systems

e files: persistent, named data objects
— data consists of a sequence of numbered bytes

— aternatively, afile may have some interna structure, e.g., a data may
consist of sequence of numbered records

— file may change size over time

— file has associated meta-data (attributes), in addition to the file name

*x examples:. owner, access controls, file type, creation and access
timestamps

e file system: acollection of files which share a common name space
— alowsfilesto be created, destroyed, renamed, . ..
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File Interface

e oOpen, close

— open returns afile identifier (or handle or descriptor), which isused in
subsequent operations to identify the file. (Why isthis done?)

e read, write

— must specify which file to read, which part of the file to read, and where to
put the data that has been read (similar for write).

— often, file position isimplicit (why?)
o seek

e Qet/set file attributes, e.g., Unix f st at, chnod
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File Read
fileoffset (implicit)
vaddr
length
length
virtual address
Space
file
read(filel D vaddr, |ength)
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File Position

e may be associated with the file, with a process, or with afile descriptor (Unix
style)
e read and write operations
— start from the current file position

— update the current file position
e this makes sequental file 1/O easy for an application to request

e for non-sequental (random) file /O, use:
— seek, to adjust file position before reading or writing
— apositioned read or write operation, e.g., Unix pread, pwite:
pread(fileld,vaddr,|length,fil ePosition)
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Sequential File Reading Example (Unix)

char buf[512];
int i1,
int f = open("nyfile", O RDONLY);
for(i=0;i<100;i++) {
read(f, (void *)buf, 512);
}

cl ose(f);

Read thefirst 100 x 512 bytes of afile, 512 bytes at atime.
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File Reading Example Using Seek (Unix)

char buf[512];
Int 1 ;
Int f = open("nyfile", O RDONLY);
| seek(f, 99*512, SEEK SET);
for(i=0;i<100;i++) {

read(f, (void *)buf, 512);

| seek(f,-1024, SEEK CUR);
}

cl ose(f);

Read the first 100 x 512 bytes of a file, 512 bytes at a time, in
reverse order.
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File Reading Example Using Positioned Read

char buf[512];
Int 1 ;
Int f = open("nyfile", O RDONLY);
for(i=0;i<50;i+=2) {

pread(f, (void *)buf,512,1*512);
t

cl ose(f);

Read every second 512 byte chunk of a file, until 50 have been
read.

CS350 Operating Systems Fall 2003



File Systems 8

File Names

e flat namespace

— file names are simple strings

e hierarchical namespace
— directories (folders) can be used to organize files and/or other directories
— directory inclusion graph isatree

— pathname: file or directory isidentified by a path in the tree

Unix: / hone/ knsal em cour ses/ cs350/ notes/fil esys. ps
Windows: \ knsal em ¢s350\ schedul e. t xt
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Hierarchical Namespace Example

@ = directory

= file
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Acyclic File Namespaces

e directory inclusion graph can be a (rooted) DAG

e alowsfiles/directoriesto have more than one pathname
— Increased flexibility for file sharing and file organization

— file removal and some other file system operations are more complicated
e examples:

Rooted Acyclic Namespace An Unrooted DAG

proj.cc
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General File Namespaces

o e NO restriction on inclusion graph (except perhaps that
a it should have a designated root node)
® - e maximum flexibility
b C e additional complications, e.g.:
o — — reference counts are no longer sufficient for im-
plementing file deletion
d

— pathnames can have an infinite number of compo-
nents
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File Links

e typically, anew file or directory islinked to asingle “parent” directory when
It is created. This gives a hierarchical namespace.

e another mechanism can then be used to create additional linksto existing files
or directories, introducing non-hierarchical structure in the namespace.
e hard links
— “first class’ links, like the original link to afile
— referential integrity is maintained (no “dangling” hard links)
— scope usually restricted to asingle file system
— Unix: hard links can be made to files, but not to directories. This
restriction is sufficient to avoid cycles. (Why?)
e soft links (a.k.a. “symbolic links’, “shortcuts’)
— referential integrity is not maintained

— flexible: may be allowed to span file systems, may link to directories and
(possibly) create cycles
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Hard Link Example (Part 1)

link(/y/k/g, /z/m)
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Hard Link Example (Part 2)

link(/y/k/g, /z/m)
o unlink(/y/k/g)
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Soft Link Example (Part 1)

symlink(/y/k/qg, /z/m)
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Soft Link Example (Part 2)

e symlink(/y/k/g, /z/m)

7

- \ unlink(/y/k/g)

"dangling" soft link
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Multiple File Systems

e it isnot uncommon for a system to have multiple file systems
e some kind of global file namespace is required

e two examples:

DOS: usetwo-part file names: file system name,pathname
— example: C:. \ knsal eml ¢s350\ schedul e. t xt
Unix: merge file graphs into a single graph
— Unix nount system call doesthis
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Unix mount Example

"root" file system file system X
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e Space management

File System Implementation

e fileindexing (how to locate file data and meta-data)

e directories

e links

e buffering, in-memory data structures

e persistence
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Space Allocation

e space may be allocated in fixed-size chunks, or in chuncks of varying size
o fixed-size chunks

— simple space management

— internal fragmentation

e Vvariable-size chunks

— external fragmentation

fixed—size allocation

variable—size allocation
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Space Allocation (continued)

e differences between primary and secondary memory
— larger transfers are cheaper (per byte) than smaller transfers
— sequential I/O is faster than random 1/O

e both of these suggest that space should be allocated to files in large chunks,
sometimes calledxtents
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File Indexing

¢ in general, a file will require more than one chunk of allocated space (extent)
e this is especially true because files can grow

e how to find all of a file’s data?
chaining:
— each chunk includes a pointer to the next chunk
— OK for sequential access, poor for random access

external chaining: DOS file access table (FAT), for example
— like chaining, but the chain is kept in an external structure

per-file index: Unix i-node and NachOS FileHeader, for example
— for each file, maintain a table of pointers to the file’s blocks or extents
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Chaining
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External Chaining (File Access Table)

T S~ external chain
[ " T =P T T T I T T RElE] (file access table)
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Per-File Indexing
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File Meta-Data and Other Information

e Where to store file meta-data?
— iImmediately preceding the file data
— with the file index (if per-file indexing is being used)

— with the directory entry for the file
x this is a problem if a file can have multiple names, and thus multiple

directory entries
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Unix i-nodes

e an i-node is a particular implementation of a per-file index

e each i-node is uniquely identified by an i-number, which determines its
physical location on the disk
e an i-node is a fixed size record containing:

file attribute values
— file type
— file owner and group
— access controls
— creation, reference and update timestamps
— file size

direct block pointers: approximately 10 of these
single indirect block pointer
double indirect block pointer

triple indirect block pointer
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I-node Diagram
—node (not to scale!) data blocks
attribute values
direct
direct °
direct °
double indirect >l
triple indirect “\l
/ Y
- [
\\ 4
indirect blocks
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NachOS FileHeader

#define NunDirect ((SectorSize-2*sizeof(int))/sizeof(int))
cl ass Fil eHeader {
publ i c:
[/ methods here
private:
| nt nunByt es; [l file size in bytes
I nt nunBectors; // file size Iin sectors
| nt dataSectors[NunDirect]; // direct pointers
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Directories

e A directory consists of a set of entries, where each entry is arecord that
Includes:

— afile name (component of a path name)

— afile“locator”
« |ocation of the first block of thefile, if chaining or external chaining is

used
+ location of the file index, if per-file indexing is being used
e A directory can be implemented like any other file, except:

— Interface should allow reading of records (can be provided by a special
system call or an library)

— file should not be writable directly by application programs

— directory records are updated by the kernel asfiles are created and
destroyed
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Implementing Hard Links (Unix)

e hard links are ssimply directory entries

e for example, consider:
link(/y/klig,/zlm

e to implement this:;

— create anew entry in directory / z

x file namein new entry ism
« file locator (i-number) in the new entry is the same as the i-number for

entry g indirectory / y/ k
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Implementing Soft Links (Unix)

e soft links are implemented as a special type of file

e for example, consider:
symink(/y/klig,/zIlm

e to implement this:
— create anew symlink file

— add anew entry indirectory / z

x file namein new entry ism
x 1-number in the new entry is the i-number of the new symlink file

— gtore the pathname string “/y/k/g” as the contents of the new symlink file

e change the behaviour of the open system call so that when the symlink fileis
encountered during open(/ z/ m , thefile/ y/ k/ g will be opened instead.
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File System Meta-Data

o file system must record:
— location of file indexes or file allocation table
— location of freelist(s) or free space index
— file system parameters, e.g., block size

— file system identifier and other attributes

e example: Unix superblock
— located at fixed, predefined location(s) on the disk

e example: NachOS free space bitmap and directory files

— headersfor these files are located in disk sectors 0 and 1
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Main Memory Data Structures
Primary Memory (volatile)
i 4
per process system open file table block buffer cache
open file tables :\ (cached copies of blocks)
0=
. a1
21 | 4
g e R
2 ™ ~=
3 ] cachedi-nodes | '~ -
data blocks, index blocks, i—nodes, etc.
Secondary Memory (persistent)
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A Simple Exercise

e Walk through the steps that the file system must take to implement Cpen.
— which data structures (from the previous slide) are updated?

— how much disk 1/O isinvolved?
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Problems Caused by Failures

e asinglelogical file system operation may reguire several disk 1/O operations

e example: deleting afile
— remove entry from directory
— remove file index (i-node) from i-node table
— mark file's data blocks free in free space index

e what if, because afailure, some but not all of these changes are reflected on
the disk?
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Fault Tolerance

e special-purpose consistency checkers (e.g., Unix f sck in Berkeley FFS,
Linux ext2)

— runs after a crash, before normal operations resume

— find and attempt to repair inconsistent file system data structures, e.qg.:
« file with no directory entry

x free space that is not marked as free
e journaling (e.g., Veritas, NTFS, Linux ext3)

— record file system meta-data changes in ajournal (log), so that sequences
of changes can be written to disk in asingle operation

— after changes have been journaled, update the disk data structures
(write-ahead logging)

— after afailure, redo journaled updates in case they were not done before
the failure
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