
File Systems 38

Memory-Mapped Files

• generic interface:

vaddr ← mmap(file descriptor,fileoffset,length)

munmap(vaddr,length)

• mmap call returns the virtual address to which the file is mapped

• munmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.

CS350 Operating Systems Fall 2003

File Systems 39

Memory Mapping Illustration

virtual address
 space

length

vaddr

length

fileoffset

file

CS350 Operating Systems Fall 2003

File Systems 40

Memory Mapping Update Semantics

• what should happen if the virtual memory to which a file has been mapped is

updated?

• some options:

– prohibit updates (read-only mapping)

– eager propagation of the update to the file (too slow!)

– lazy propagation of the update to the file

∗ user may be able to request propagation (e.g., Posix msync()

∗ propagation may be guaranteed by munmap()

– allow updates, but do not propagate them to the file

CS350 Operating Systems Fall 2003

File Systems 41

Memory Mapping Concurrency Semantics

• what should happen if a memory mapped file is updated?

– by a process that has mmapped the same file

– by a process that is updating the file using a write() system call

• options are similar to those on the previous slide. Typically:

– propagate lazily: processes that have mapped the file may eventually see

the changes

– propagate eagerly: other processes will see the changes

∗ typically implemented by invalidating other process’s page table entries

CS350 Operating Systems Fall 2003

Interprocess Communication 1

Interprocess Communication Mechanisms

• shared storage

– These mechanisms have already been covered. examples:

∗ shared virtual memory

∗ shared files

– processes must agree on a name (e.g., a file name, or a shared virtual

memory key) in order to establish communication

• message based

– signals

– sockets

– pipes

– . . .

CS350 Operating Systems Fall 2003

Interprocess Communication 2

Signals

• signals permit asynchronous one-way communication

– from a process to another process, or to a group of processes

– from the kernel to a process, or to a group of processes

• there are many types of signals

• the arrival of a signal causes the execution of a signal handler in the receiving

process

• there may be a different handler for each type of signal

CS350 Operating Systems Fall 2003

Interprocess Communication 3

Examples of Signal Types

Signal Value Action Comment

SIGINT 2 Term Interrupt from keyboard

SIGILL 4 Core Illegal Instruction

SIGKILL 9 Term Kill signal

SIGCHLD 20,17,18 Ign Child stopped or terminated

SIGBUS 10,7,10 Core Bus error

SIGXCPU 24,24,30 Core CPU time limit exceeded

SIGSTOP 17,19,23 Stop Stop process

CS350 Operating Systems Fall 2003

Interprocess Communication 4

Signal Handling

• operating system determined default signal handling for each new process

• example default actions:

– ignore (do nothing)

– kill (terminate the process)

– stop (block the process)

• running processes can change the default for some or all types of signals

• signal-related system calls

– calls to set non-default signal handlers, e.g., Unix signal, sigaction

– calls to send signals, e.g., Unix kill

CS350 Operating Systems Fall 2003

Interprocess Communication 5

Message Passing

operating system

sender receiver
send receive

operating system

sender receiver
send receive

Direct Message Passing

Indirect Message Passing

If message passing is indirect, the message passing system must

have some capacity to buffer (store) messages.

CS350 Operating Systems Fall 2003

Interprocess Communication 6

Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:

• simplex (one-way)

• duplex (two-way)

• half-duplex (two-way, but only one way at a time)

Message Boundaries:

datagram model: message boundaries

stream model: no boundaries

CS350 Operating Systems Fall 2003

Interprocess Communication 7

Properties of Message Passing Mechanisms (cont’d)

Connections: need to connect before communicating?

• in connection-oriented models, recipient is specified at time of connection,

not by individual send operations. All messages sent over a connection

have the same recipient.

• in connectionless models, recipient is specified as a parameter to each send

operation.

Reliability:

• can messages get lost?

• can messages get reordered?

• can messages get damaged?

CS350 Operating Systems Fall 2003

Interprocess Communication 8

Sockets

• a socket is a communication end-points

• if two processes are to communicate, each process must create its own socket

• two common types of sockets

stream sockets: support connection-oriented, reliable, duplex

communication under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex

communication under the datagram model (message boundaries)

• both types of sockets also support a variety of address domains, e.g.,

Unix domain: useful for communication between processes running on the

same machine

INET domain: useful for communication between process running on

different machines that can communicate using the TCP/IP protocols.

CS350 Operating Systems Fall 2003

Interprocess Communication 9

Using Datagram Sockets (Receiver)

s = socket(addressType, SOCK_DGRAM);

bind(s,address)

recvfrom(s,buf,bufLength,sourceAddress);

. . .

close(s);

• socket creates a socket

• bind assigns an address to the socket

• recvfrom receives a message from the socket

– buf is a buffer to hold the incoming message

– sourceAddress is a buffer to hold the address of the message sender

• both buf and sourceAddress are filled by the recvfrom call

CS350 Operating Systems Fall 2003

Interprocess Communication 10

Using Datagram Sockets (Sender)

s = socket(addressType, SOCK_DGRAM);

sendto(s,buf,msgLength,targetAddress)

. . .

close(s);

• socket creates a socket

• sendto send a message using the socket

– buf is a buffer that contains the message to be sent

– msgLength indicates the length of the message in the buffer

– targetAddress is the address of the socket to which the message is to

be delivered

CS350 Operating Systems Fall 2003

Interprocess Communication 11

More on Datagram Sockets

• sendto and recvfrom calls may block

– recvfrom blocks if there are no messages to be received from the

specified socket

– sendto blocks if the system has no more room to buffer undelivered

messages

• datagram socket communications are (in general) unreliable

– messages (datagrams) may be lost

– messages may be reordered

• The sending process must know the address of the receive process’s socket.

How does it know this?

CS350 Operating Systems Fall 2003

Interprocess Communication 12

A Socket Address Convention

Service Port Description

echo 7/udp

systat 11/tcp

netstat 15/tcp

chargen 19/udp

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp

time 37/udp

gopher 70/tcp # Internet Gopher

finger 79/tcp

www 80/tcp # WorldWideWeb HTTP

pop2 109/tcp # POP version 2

imap2 143/tcp # IMAP

CS350 Operating Systems Fall 2003

Interprocess Communication 13

Using Stream Sockets (Passive Process)

s = socket(addressType, SOCK_STREAM);

bind(s,address);

listen(s,backlog);

ns = accept(s,sourceAddress);

recv(ns,buf,bufLength);

send(ns,buf,bufLength);

. . .

close(ns); // close accepted connection

close(s); // don’t accept more connections

• listen specifies the number of connection requests for this socket that will

be queued by the kernel

• accept accepts a connection request and creates a new socket (ns)

• recv receives up to bufLength bytes of data from the connection

• send sends bufLength bytes of data over the connection.

CS350 Operating Systems Fall 2003

Interprocess Communication 14

Notes on Using Stream Sockets (Passive Process)

• accept creates a new socket (ns) for the new connection

• sourceAddress is an address buffer. accept fills it with the address of

the socket that has made the connection request

• additional connection requests can be accepted using more accept calls on

the original socket (s)

• accept blocks if there are no pending connection requests

• connection is duplex (both send and recv can be used

CS350 Operating Systems Fall 2003

Interprocess Communication 15

Using Stream Sockets (Active Process)

s = socket(addressType, SOCK_STREAM);

connect(s,targetAddress);

send(s,buf,bufLength);

recv(s,buf,bufLength);

. . .

close(s);

• connect requests a connection request to the socket with the specified

address

– connect blocks until the connection request has been accepted

• active process may (optionally) bind an address to the socket (using bind)

before connecting. This is the address that will be returned by the accept

call in the passive process

• if the active process does not choose an address, the system will choose one

CS350 Operating Systems Fall 2003

Interprocess Communication 16

Illustration of Stream Socket Connections

(active)

(active)

(passive)

s s

s2

s3

process 1 process 2

process 3

queue of connection requests

socket

CS350 Operating Systems Fall 2003

Interprocess Communication 17

Pipes

• pipes are communications objects (not end-points)

• pipes use the stream model and are connection-oriented and reliable

• some pipes are simplex, some are duplex

• pipes use an implicit addressing mechanism that limits their use to

communication between related processes, typically a child process and its

parent

• a pipe() system call creates a pipe and returns two descriptors, one for each

end of the pipe

– for a simplex pipe, one descriptor is for reading, the other is for writing

– for a duplex pipe, both descriptors can be used for reading and writing

CS350 Operating Systems Fall 2003

Interprocess Communication 18

One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char m[] = ‘‘message for parent’’;

char y[100];

pipe(fd); // create pipe

pid = fork(); // create child process

if (pid == 0) {
// child executes this

close(fd[0]); // close read end of pipe

write(fd[1],m,19);

. . .

} else {
// parent executes this

close(fd[1]); // close write end of pipe

read(fd[0],y,100);

. . .

}
CS350 Operating Systems Fall 2003

Interprocess Communication 19

Illustration of Example (after pipe())

parent process

CS350 Operating Systems Fall 2003

Interprocess Communication 20

Illustration of Example (after fork())

parent process child process

CS350 Operating Systems Fall 2003

Interprocess Communication 21

Illustration of Example (after close())

parent process child process

CS350 Operating Systems Fall 2003

Interprocess Communication 22

Examples of Other Interprocess Communication Mechanisms

named pipe:

• similar to pipes, but with an associated name (usually a file name)

• name allows arbitrary processes to communicate by opening the same

named pipe

• must be explicitly deleted, unlike an unnamed pipe

message queue:

• like a named pipe, except that there are message boundaries

• msgsend call sends a message into the queue, msgrecv call receives the

next message from the queue

CS350 Operating Systems Fall 2003

Interprocess Communication 23

Implementing IPC

• application processes use descriptors (identifiers) provided by the kernel to

refer to specific sockets and pipe, as well as files and other objects

• kernel descriptor tables (or other similar mechanism) are used to associate

descriptors with kernel data structures that implement IPC objects

• kernel provides bounded buffer space for data that has been sent using an IPC

mechanism, but that has not yet been received

– for IPC objects, like pipes, buffering is usually on a per object basis

– IPC end points, like sockets, buffering is associated with each endpoint

P1 P2

system call
interface

system call
interface

buffer

operating system

CS350 Operating Systems Fall 2003

Interprocess Communication 24

Network Interprocess Communication

• some sockets can be used to connect processes that are running on different

machine

• the kernel:

– controls access to network interfaces

– multiplexes socket connections across the network

P2 P3P1

network interface

P2 P3P1

network interface

network

operating
system

operating
system

CS350 Operating Systems Fall 2003

Interprocess Communication 25

Networking Reference Models

• ISO/OSI Reference

Model

7 Application Layer

6 Presentation Layer

5 Session Layer

4 Transport Layer

3 Network Layer

2 Data Link Layer

1 Physical Layer

• Internet Model

– layers 1-4 and 7

Layer 1Layer 1

Layer N

Layer N+1

Layer N

Layer N+1

layer 1 protocol

layer N+1 protocol

layer N protocol

ayer N+1 service

layer N service

CS350 Operating Systems Fall 2003

Interprocess Communication 26

Internet Protocol (IP): Layer 3

• every machine has one (or more) IP addresses, in addition to its data link layer

address(es)

• In IPv4, addresses are 32 bits, and are commonly written using “dot” notation,

e.g.:

– cpu06.student.cs = 129.97.152.106

– www.google.ca = 216.239.37.99

• IP moves packets (datagrams) from one machine to another machine

• principal function of IP is routing: determining the network path that a packet

should take to reach its destination

• IP packet delivery is “best effort” (unreliable)

CS350 Operating Systems Fall 2003

Interprocess Communication 27

IP Routing Table Example

• Routing table for zonker.uwaterloo.ca, which is on three networks, and has IP

addresses 129.97.74.66, 172.16.162.1, and 192.168.148.1 (one per network).

Destination Gateway Interface

172.16.162.* - vmnet1

129.97.74.* - eth0

192.168.148.* - vmnet8

default 129.97.74.1 eth0

• routing table key:

destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is directly

reachable)

interface: which network interface to use to send this packet

CS350 Operating Systems Fall 2003

Interprocess Communication 28

Internet Transport Protocols

TCP: transport control protocol

• connection-oriented

• reliable

• stream

• congestion control

• used to implement INET domain stream sockets

UDP: user datagram protocol

• connectionless

• unreliable

• datagram

• no congestion control

• used to implement INET domain datagram sockets

CS350 Operating Systems Fall 2003

Interprocess Communication 29

TCP and UDP Ports

• since there can be many TCP or UDP communications end points (sockets) on

a single machine, there must be a way to distinguish among them

• each TCP or UDP address can be thought of as having two parts:

(machine name, port number)

• The machine name is the IP address of a machine, and the port number serves

to distinguish among the end points on that machine.

• INET domain socket addresses are TCP or UDP addresses (depending on

whether the socket is a stream socket or a datagram socket).

CS350 Operating Systems Fall 2003

Interprocess Communication 30

Example of Network Layers

Network
Instance

Network
Instance

Network
Instance

Network
Instance

Instance
Data Link

Instance
Data Link

Instance
Data Link

Instance
Data Link

Instance
Transport

Instance
Transport

Application
Process

Application
Process

gateways

network

network

network

CS350 Operating Systems Fall 2003

Interprocess Communication 31

Network Packets (UDP Example)

UDP payload

IP payload

Data Link Payload

application message

application message

application message

application message

UDP header

UDP header

UDP header

IP Header

IP HeaderData Link Header

CS350 Operating Systems Fall 2003

Interprocess Communication 32

BSD Unix Networking Layers

network
device

network
device

network
device

interface layer

socket layer

protocol layer

process

socket queues

system calls

(IP) protocol queue
interface
queues

(ethernet,PPP,loopback,...)

(TCP,UDP,IP,...)

CS350 Operating Systems Fall 2003

