File Systems 38

Memory-Mapped Files

e generic interface:

vaddr «— mmap(file descriptor,fileoffset,|ength)
munnmap( vaddr, | engt h)

e nmup call returnsthe virtual addressto which the file is mapped

e munmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.

CS350 Operating Systems Fall 2003



File Systems 39
Memory Mapping Illustration
fileoffset
vaddr
PP length
length P
virtual address file
space

CS350 Operating Systems Fall 2003



File Systems 40

Memory Mapping Update Semantics

e What should happen if the virtual memory to which afile has been mapped is
updated?
e SOMe options:
— prohibit updates (read-only mapping)
— eager propagation of the update to the file (too slow!)

— lazy propagation of the update to the file

* user may be able to request propagation (e.g., Posix nsync()
* propagation may be guaranteed by nunnmap()

— allow updates, but do not propagate them to thefile

CS350 Operating Systems Fall 2003



File Systems 41

Memory Mapping Concurrency Semantics

e What should happen if amemory mapped file is updated?
— by aprocess that has mmapped the samefile
— by aprocessthat isupdating thefileussingawr i t e() system call

e oOptions are similar to those on the previous slide. Typically:

— propagate lazily: processes that have mapped the file may eventually see
the changes

— propagate eagerly: other processes will see the changes
x typically implemented by invalidating other process's page table entries

CS350 Operating Systems Fall 2003



I nterprocess Communication 1

| nter process Communication Mechanisms

e shared storage

— These mechanisms have already been covered. examples:

* shared virtual memory
x shared files

— processes must agree on a name (e.g., afile name, or a shared virtual
memory key) in order to establish communication
e Mmessage based
— gsignals
— sockets

— pipes

CS350 Operating Systems Fall 2003



I nterprocess Communication 2

Signals

e Signals permit asynchronous one-way communication
— from a process to another process, or to a group of processes

— from the kernel to a process, or to a group of processes
e there are many types of signals

e the arrival of asignal causes the execution of asignal handler in the receiving
process

e there may be adifferent handler for each type of signal

CS350 Operating Systems Fall 2003



I nterprocess Communication

Examples of Signal Types

Si gnal Val ue Act i on Comment
SI A NT 2 Term | nterrupt from keyboard
SIGE LL 4 Cor e |l 1 egal Instruction
SI &KI LL 9 Term Kill signal
SIGCHLD 20,17, 18 | gn Chil d stopped or term nated
Sl GBUS 10, 7, 10 Cor e Bus error
SI GXCPU 24, 24, 30 Core CPUtine limt exceeded
Sl GSTOP 17,19, 23 St op St op process
CS350 Operating Systems Fall 2003



I nterprocess Communication 4

Signal Handling

e Operating system determined default signal handling for each new process

e example default actions:
— Ignore (do nothing)
— kill (terminate the process)

— stop (block the process)
e running processes can change the default for some or all types of signals

e signal-related system calls
— callsto set non-default signal handlers, e.g., Unix si gnal , si gacti on

— callsto send signals, e.g., Unix ki | |

CS350 Operating Systems Fall 2003



I nterprocess Communication 5
M essage Passing
Indirect Message Passing
4 ] )
o operating system S
sender = receiver
send . O receive
- J
4 ] )
operating system
sender receiver
send . receive
- J
Direct Message Passing
If message passing is indirect, the message passing system must
have some capacity to buffer (store) messages.
CS350 Operating Systems Fall 2003



I nterprocess Communication

Properties of M essage Passing M echanisms

Addressing: how to identify where a message should go

Directionality:

e simplex (one-way)

e duplex (two-way)

e half-duplex (two-way, but only one way at atime)
M essage Boundaries:

datagram model: message boundaries

stream mode: no boundaries

CS350 Operating Systems

Fall 2003



I nterprocess Communication 7

Properties of M essage Passing M echanisms (cont’d)

Connections. need to connect before communicating?

e in connection-oriented models, recipient is specified at time of connection,
not by individual send operations. All messages sent over a connection
have the same reci pient.

e N connectionless models, recipient is specified as a parameter to each send
operation.
Reliability:
e Can messages get lost?
e Can messages get reordered?
e Can messages get damaged?

CS350 Operating Systems Fall 2003



I nterprocess Communication 8

Sockets

e asocket isacommunication end-points
e If two processes are to communicate, each process must create its own socket

e two common types of sockets

stream sockets. support connection-oriented, reliable, duplex
communication under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex
communication under the datagram model (message boundaries)
e both types of sockets also support avariety of address domains, e.qg.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using the TCP/IP protocols.

CS350 Operating Systems Fall 2003



I nterprocess Communication 9

Using Datagram Sockets (Receiver)

s = socket (addressType, SOCK DGRAM ;
bi nd(s, addr ess)
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

cl ose(s);

e socket createsasocket
e DI nd assigns an address to the socket

e I ecvf r omreceives a message from the socket
— buf isabuffer to hold the incoming message

— sour ceAddr ess isabuffer to hold the address of the message sender

e both buf and sour ceAddr ess arefilled by ther ecvf r omcall

CS350 Operating Systems Fall 2003



I nterprocess Communication 10

Using Datagram Sockets (Sender)

S = socket (addressType, SOCK DGRAM ;
sendt o( s, buf, negLengt h, t ar get Addr ess)

;;.I.ose(s) ;

e socket createsasocket

e sendt o send a message using the socket
— buf isabuffer that contains the message to be sent
— msglLengt h indicates the length of the message in the buffer

— t ar get Addr ess isthe address of the socket to which the message isto
be delivered

CS350 Operating Systems Fall 2003



I nterprocess Communication 11

More on Datagram Sockets

e sendt o andr ecvfr omcalsmay block

— recvf romblocksif there are no messages to be received from the
specified socket

— sendt o blocksif the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliable
— messages (datagrams) may be lost
— messages may be reordered

e The sending process must know the address of the receive process's socket.
How does it know this?

CS350 Operating Systems Fall 2003



I nterprocess Communication 12

A Socket Address Convention

Servi ce Por t Descri ption

echo 7/ udp

syst at 11/ tcp

net st at 15/tcp

char gen 19/ udp

ftp 21/ tcp

ssh 22/ tcp # SSH Renote Login Protocol
t el net 23/tcp

snt p 25/t cp

time 37/ udp

gopher 70/ tcp # I nternet Gopher
fi1nger 79/tcp

VWA 80/tcp # Wor| dW deWeb HTTP
pop2 109/ tcp # POP version 2

| map2 143/ tcp # | MAP

CS350 Operating Systems Fall 2003



I nterprocess Communication 13

Using Stream Sockets (Passive Process)

S = socket (addressType, SOCK STREAM ;
bi nd( s, address);

| i sten(s, backl og) ;

ns = accept (s, sourceAddress);
recv(ns, buf, buf Lengt h) ;

send( ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don’t accept nore connections

e | i st en specifiesthe number of connection requests for this socket that will
be queued by the kernel

e accept acceptsaconnection reguest and creates a new socket (ns)
e I ecv receives up to buf Lengt h bytes of data from the connection

e send sendsbuf Lengt h bytes of data over the connection.

CS350 Operating Systems Fall 2003



I nterprocess Communication 14

Notes on Using Stream Sockets (Passive Process)

e accept createsanew socket (ns) for the new connection

e Sour ceAddr ess isan address buffer. accept fillsit with the address of
the socket that has made the connection request

e additional connection reguests can be accepted using moreaccept calson
the original socket (s)

e accept blocksif there are no pending connection requests

e connection isduplex (both send and r ecv can be used

CS350 Operating Systems Fall 2003



I nterprocess Communication 15

Using Stream Sockets (Active Process)

S = socket (addressType, SOCK STREAM ;
connect (s, t arget Addr ess) ;

send( s, buf, buf Lengt h) ;
recv(s, buf, buf Lengt h) ;

.C.I.ose(s) ;

e connect reguestsaconnection reguest to the socket with the specified
address

— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the socket (using bi nd)
before connecting. Thisisthe address that will be returned by the accept
call in the passive process

e if the active process does not choose an address, the system will choose one

CS350 Operating Systems Fall 2003



I nterprocess Communication 16
| llustration of Stream Socket Connections
gueue of connection requests
S L [ED S
socket
process 1 process 2
(active) (passive)
process 3
(active)
CS350 Operating Systems Fall 2003



I nterprocess Communication 17

Pipes

e pipes are communications objects (not end-points)
e pipes use the stream model and are connection-oriented and reliable
e SOMme pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits their use to
communication between related processes, typically achild process and its
parent

e api pe() system call creates a pipe and returns two descriptors, one for each
end of the pipe
— for asimplex pipe, one descriptor isfor reading, the other isfor writing

— for aduplex pipe, both descriptors can be used for reading and writing

CS350 Operating Systems Fall 2003



I nterprocess Communication 18

One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char nf] = '‘nessage for parent’’;

char y[100];

pipe(fd); // create pipe

pid = fork(); // create child process

1f (pid == 0) {
/[l child executes this
close(fd[0]); // close read end of pipe
wite(fd[1],m 19);

} else {
/| parent executes this

close(fd[1]); // close wite end of pipe
read(fd[O], vy, 100);

CS350 Operating Systems Fall 2003



I nterprocess Communication 19

[llustration of Example (after pi pe())

0

g,

parent process

CS350 Operating Systems Fall 2003



I nterprocess Communication 20

| llustration of Example (after f or k() )

0

parent process child process

CS350 Operating Systems Fall 2003



I nterprocess Communication 21

Illustration of Example (after cl ose())

0

£

parent process child process

CS350 Operating Systems Fall 2003



I nterprocess Communication 22

Examples of Other Interprocess Communication Mechanisms

named pipe:
e Similar to pipes, but with an associated name (usually afile name)

e name allows arbitrary processes to communicate by opening the same
named pipe

e must be explicitly deleted, unlike an unnamed pipe
message queue;
¢ like anamed pipe, except that there are message boundaries

e Msgsend call sends amessage into the queue, nsgr ecv call receivesthe
next message from the queue

CS350 Operating Systems Fall 2003



I nterprocess Communication

23

| mplementing IPC

e application processes use descriptors (identifiers) provided by the kernel to
refer to specific sockets and pipe, as well as files and other objects

e kernel descriptor tables (or other ssmilar mechanism) are used to associate
descriptors with kernel data structures that implement |PC objects

e kernel provides bounded buffer space for data that has been sent using an IPC

mechanism, but that has not yet been received

— for IPC objects, like pipes, buffering is usually on a per object basis

— IPC end points, like sockets, buffering is associated with each endpoint

Q_/stem cal N buffer
interface

operating system

system call
interface

CS350 Operating Systems

Fall 2003



I nterprocess Communication 24

Network | nter process Communication
e Some sockets can be used to connect processes that are running on different
machine

e the kerndl:
— controls access to network interfaces

— multiplexes socket connections across the network

G

operating Y % s ' \ ¥ ) /Operati ng

stem
¥ n&work interface network interface system

/\navv_oy\

CS350 Operating Systems Fall 2003




I nterprocess Communication

25

Networ king Reference M odels

e |SO/OS|I Reference
M odél

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

R I N WP OO |

Physical Layer

e Internet Model
— layers1-4 and 7

ayer N+1 service

Layer N+1

layer N+1 protocol

g — — — — — — - - - - - -~ -~~~ P

)

layer N service

]

Layer N

layer N protocol

st — — — — - — = - - = - - - - — - -~ P

|

Layer1

layer 1 protocol

Layer 1

CS350

Operating Systems

Fall 2003



I nterprocess Communication 26

Internet Protocol (1P): Layer 3

e every machine has one (or more) | P addresses, in addition to its data link layer
address(es)
e InIPv4, addresses are 32 bits, and are commonly written using “dot” notation,
e.g..
— cpu06.student.cs = 129.97.152.106
— www.google.ca= 216.239.37.99

¢ |P moves packets (datagrams) from one machine to another machine

e principal function of IP isrouting: determining the network path that a packet
should take to reach its destination

o |P packet delivery is*“best effort” (unreliable)

CS350 Operating Systems Fall 2003



I nterprocess Communication 27

| P Routing Table Example

e Routing table for zonker.uwaterloo.ca, which is on three networks, and has |P
addresses 129.97.74.66, 172.16.162.1, and 192.168.148.1 (one per network).

Destination Gateway Interface

172.16.162.* - vmnetl
129.97.74.* - ethO
192.168.148.* - vmnets

default 129.97.74.1 ethO

e routing table key:
destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is directly
reachable)

interface: which network interface to use to send this packet

CS350 Operating Systems Fall 2003



I nterprocess Communication

28

Internet Transport Protocols

TCP: transport control protocol

connection-oriented
reliable

stream

congestion control

used to implement INET domain stream sockets

UDP: user datagram protocol

connectionless
unreliable

datagram

no congestion control

used to implement INET domain datagram sockets

CS350

Operating Systems

Fall 2003



I nterprocess Communication 29

TCP and UDP Ports

e sincethere can be many TCP or UDP communications end points (sockets) on
a single machine, there must be a way to distinguish among them

e each TCP or UDP address can be thought of as having two parts:

(machine name, port number)

e The machine name isthe |P address of a machine, and the port number serves
to distinguish among the end points on that machine.

e INET domain socket addresses are TCP or UDP addresses (depending on
whether the socket is a stream socket or a datagram socket).

CS350 Operating Systems Fall 2003



I nterprocess Communication 30

Example of Network Layers

Application Application
Process Process
A A
Transport ~ - Transport
| nstance | nstance
Network - Network Network . Network
| nstance | nstance | nstance | nstance
DatalLink Data Link DataLink DataLink
- - -
| nstance I nstance | nstance I nstance

A—

CS350 Operating Systems Fall 2003




I nterprocess Communication 31
Networ k Packets (UDP Example)
application message
UDP payload
UDP header application message
- | P payload —
IPHeader | UDP header application message
Data Link Payload

Data Link Header IPHeader | UDP header application message

CS350 Operating Systems Fall 2003



32

I nterprocess Communication

BSD Unix Networking Layers

e

A

system calls

Y

socket layer

socket queues

(IP) protocol queue

interface
gueues

interface layer
(ethernet,PPP,loopback,...)

A

A A

Y Y

network network
device

Y

network
device device

Fall 2003

CS350

Operating Systems



