Virtual and Physical Addresses

- Physical addresses are provided directly by the machine.
 - one physical address space per machine
 - addresses typically range from 0 to some maximum, though some portions of this range are usually used by the OS and/or devices, and are not available for user processes
- Virtual addresses (or logical addresses) are addresses provided by the OS to processes.
 - one virtual address space per process
 - addresses typically start at zero, but not necessarily
 - space may consist of several segments
- Address translation (or address binding) means mapping virtual addresses to physical addresses.

Example 1: A Simple Address Translation Mechanism

- OS divides physical memory into partitions of different sizes.
- Each partition is made available by the OS as a possible virtual address space for processes.

• Properties:

- virtual addresses are identical to physical addresses
- address binding is performed by compiler, linker, or loader, not the OS
- changing partitons means changing the virtual addresses in the application program
 - * by recompiling
 - * or by *relocating* if the compiler produces relocatable output
- degree of multiprogramming is limited by the number of partitions
- size of programs is limited by the size of the partitions

Example 1: Address Space Diagram

Example 2: Dynamic Relocation

- hardware provides a *memory management unit* which includes a *relocation register*
- *dynamic binding:* at run-time, the contents of the relocation register are added to each virtual address to determine the corresponding physical address
- OS maintains a separate relocation register value for each process, and ensures that relocation register is reset on each context switch
- Properties
 - all programs can have address spaces that start with address 0
 - OS can relocate a process without changing the process's program
 - OS can allocate physical memory dynamically (physical partitions can change over time), again without changing user programs
 - each virtual address space still corresponds to a contiguous range of physical addresses

Example 2: Address Space Diagram

Example 2: Relocation Mechanism

Example 3: Paging

- Each virtual address space is divided into fixed-size chunks called *pages*
- The physical address space is divided into *frames*. Frame size matches page size.
- OS maintains a *page table* for each process. Page table specifies the frame in which each of the process's pages is located.
- At run time, MMU translates virtual addresses to physical using the page table of the running process.
- Properties
 - simple physical memory management
 - virtual address space need not be physically contiguous in physical space after translation.

Example 3: Address Space Diagram

Example 3: Page Table Mechanism

Summary of Binding and Memory Management Properties

address binding time:

- compile time: relocating program requires recompilation
- load time: compiler produces relocatable code
- dynamic (run time): hardware MMU performs translation

physical memory allocation:

- fixed or dynamic paritions
- fixed size paritions (frames) or variable size partitions

physical contiguity:

• virtual space is contiguous or discontiguous in physical space

Physical Memory Allocation

fixed allocation size:

- space tracking and placement are simple
- *internal* fragmentation

variable allocation size:

- space tracking and placement more complex
 - placement heuristics: first fit, best fit, worst fit
- external fragmentation

Memory Protection

- ensure that each process accesses only the physical memory that its virtual address space is bound to.
 - threat: virtual address is too large
 - solution: MMU *limit register* checks each virtual address
 - * for simple dynamic relocation, limit register contains the maximum virtual address of the running process
 - * for paging, limit register contains the maximum page number of the running process
 - MMU generates exception if the limit is exceeded
- restrict the use of some portions of an address space
 - example: read-only memory
 - approach (paging):
 - * include read-only flag in each page table entry
 - * MMU raises exception on attempt to write to a read-only page

Roles of the Operating System and the MMU (Summary)

- operating system:
 - save/restore MMU state on context switches
 - handle exceptions raised by the MMU
 - manage and allocate physical memory
- MMU (hardware):
 - translate virtual addresses to physical addresses
 - check for protection violations
 - raise exceptions when necessary

Speed of Address Translation

- Execution of each machine instruction may involve one, two or more memory operations
 - one to fetch instruction
 - one or more for instruction operands
- Address translation through a page table adds one extra memory operation (for page table entry lookup) for each memory operation performed during instruction execution
 - Simple address translation through a page table can cut instruction execution rate in half.
 - More complex translation schemes (e.g., multi-level paging) are even more expensive.
- Solution: include a Translation Lookaside Buffer (TLB) in the MMU
 - TLB is a fast, fully associative address translation cache
 - TLB hit avoids page table lookup

TLB

- Each entry in the TLB contains a (page number, frame number) pair, plus copies of some or all of the page's protection bits, use bit, and dirty bit.
- If address translation can be accomplished using a TLB entry, access to the page table is avoided.
- TLB lookup is much faster than a memory access. TLB is an associative memory page numbers of all entries are checked simultaneously for a match. However, the TLB is typically small (10² to 10³ entries).
- Otherwise, translate through the page table, and add the resulting translation to the TLB, replacing an existing entry if necessary. In a *hardware controlled* TLB, this is done by the MMU. In a *software controlled* TLB, it is done by the kernel.
- On a context switch, the kernel must clear or invalidate the TLB. (Why?)

Segmentation

- An OS that supports segmentation (e.g., Multics, OS/2) can provide more than one address space to each process.
- The individual address spaces are called *segments*.
- A logical address consists of two parts:

(segment ID, address within segment)

- Each segment:
 - can grow or shrink independently of the other segments
 - has its own memory protection attributes
- For example, process could use separate segments for code, data, and stack.

Segmented Address Space Diagram

Mechanism for Translating Segmented Addresses

This translation mechanism requires physically contiguous allocation of segments.

Combining Segmentation and Paging

Combining Segmentation and Paging: Translation Mechanism

Simulating Segmentation with Paging

virtual address space

Shared Virtual Memory

- virtual memory sharing allows parts of two or more address spaces to overlap
- shared virtual memory is:
 - a way to use physical memory more efficiently, e.g., one copy of a program can be shared by several processes
 - a mechanism for interprocess communication
- sharing is accomplished by mapping virtual addresses from several processes to the same physical addressed
- unit of sharing can be a page or a segment

Shared Pages Diagram

Shared Segments Diagram

An Address Space for the Kernel

Option 1: Kernel in physical space

- mechanism: disable MMU in system mode, enable it in user mode
- accessing process address spaces: OS must interpret process page tables
- OS must be entirely memory resident

Option 2: Kernel in separate logical space

- mechanism: MMU has separate state for user and system modes
- accessing process address spaces: difficult
- portions of the OS may be non-resident

Option 3: Kernel shares logical space with each process

- memory protection mechanism is used to isolate the OS
- accessing process address space: easy (process and kernel share the same address space)
- portions of the OS may be non-resident

The Kernel in Process' Address Spaces

Attempts to access kernel code/data in user mode result in memory protection exceptions, not invalid address exceptions.

Memory Management Interface

- much memory allocation is implicit, e.g.:
 - allocation for address space of new process
 - implicit stack growth on overflow
- OS may support explicit requests to grow/shrink address space, e.g., Unix brk system call.
- shared virtual memory (simplified Solaris example):

```
Create: shmid = shmget(key,size)
```

Attach: vaddr = shmat(shmid, vaddr)

Detach: shmdt(vaddr)

Delete: shmctl(shmid, IPC_RMID)