Memory Management 1

Virtual and Physical Addresses

e Physical addresses are provided directly by the machine.
— one physical address space per machine

— addresses typically range froirto some maximum, though some portions
of this range are usually used by the OS and/or devices, and are not
available for user processes

e Virtual addresses (or logical addresses) are addresses provided by the OS to
processes.
— one virtual address space per process
— addresses typically start at zero, but not necessarily
— space may consist of sevesayments

e Address translation (or address binding) means mapping virtual addresses tc
physical addresses.

CS350 Operating Systems Fall 2003

Memory Management 2

Example 1. A Simple Address Translation Mechanism

e OS divides physical memory into partitions of different sizes.

e Each partition is made available by the OS as a possible virtual address spac
for processes.

e Properties:
— virtual addresses are identical to physical addresses
— address binding is performed by compiler, linker, or loader, not the OS

— changing partitons means changing the virtual addresses in the applicatio
program

x by recompiling
x or byrelocating if the compiler produces relocatable output
— degree of multiprogramming is limited by the number of partitions

— size of programs is limited by the size of the partitions

CS350 Operating Systems Fall 2003

Memory Management 3

Example 1: Address Space Diagram

Proc 1 virtual address space physical memory
A S~ 0
A
B ~
C o T =~
B
C
D
Proc 2 o
virtual address space
D
m
2 -]

CS350 Operating Systems Fall 2003

Memory Management 4

Example 2. Dynamic Relocation

e hardware provides memory management unit which includes aelocation
register

e dynamic binding: at run-time, the contents of the relocation register are added
to each virtual address to determine the corresponding physical address

e OS maintains a separate relocation register value for each process, and
ensures that relocation register is reset on each context switch
e Properties
— all programs can have address spaces that start with address
— OS can relocate a process without changing the process’s program

— OS can allocate phyiscal memory dynamically (physical partitions can
change over time), again without changing user programs

— each virtual address space still corresponds to a contiguous range of
physical addresses

CS350 Operating Systems Fall 2003

Memory Management 5

Example 2: Address Space Diagram

Proc1l virtua address space physical memory
0 T~ 0
o A
max1 N
0
\\\\\\\ o A + max1
C
max2
Proc 2 Tl
virtual address space Tl
o C + max2
m
2 -1

CS350 Operating Systems Fall 2003

Memory Management 6

Example 2: Relocation Mechanism

virtual address physical address
—~<~— v hits—> —<— mbits —>
| | | |
A

-9

—~<— mbits —>

relocation
register

CS350 Operating Systems Fall 2003

Memory Management 7

Example 3: Paging

e Each virtual address space is divided into fixed-size chunks called pages

e The physical address space is divided into frames. Frame size matches page
size.

e OS maintains a page table for each process. Page table specifies the framein
which each of the process's pagesis located.

e Atruntime, MMU trandates virtual addresses to physical using the page table
of the running process.
e Properties
— simple physical memory management

— virtual address space need not be physically contiguous in physical space
after trandation.

CS350 Operating Systems Fall 2003

Memory Management 8
Example 3: Address Space Diagram
Proc1l virtual address space physical memory
0 0
max1
0
max2
Proc 2
virtual address space
m
2 -]
CS350 Operating Systems Fall 2003

Memory Management

virtual

~<—— y bits —>

Example 3: Page Table Mechanism

address

page #

offset

physical address

~<— m bits —>

frame #

offset

A

!

—~<— mbits —>

age table base

register

protection and

other flags

frame #

page table

CS350

Operating Systems

Fall 2003

Memory Management 10

Summary of Binding and Memory Management Properties

address binding time:
e compiletime: relocating program requires recompilation
e |oad time: compiler produces rel ocatable code

e dynamic (run time): hardware MMU performs translation
physical memory allocation:

e fixed or dynamic paritions

e fixed size paritions (frames) or variable size partitions
physical contiguity:

e Vvirtual space is contiguous or discontiguous in physical space

CS350 Operating Systems Fall 2003

Memory Management

11

Physical Memory Allocation

fixed allocation size:
e space tracking and placement are ssmple

e internal fragmentation

variable allocation size:

e space tracking and placement more complex
— placement heuristics: first fit, best fit, worst fit

e external fragmentation

CS350 Operating Systems

Fall 2003

Memory Management

12

Memory Protection

e ensure that each process accesses only the physical memory that its virtual
address space is bound to.

— threat: virtual addressistoo large

— solution: MMU limit register checks each virtual address

x for simple dynamic relocation, limit register contains the maximum
virtual address of the running process

« for paging, limit register contains the maximum page number of the
running process

— MMU generates exception if the limit is exceeded

e restrict the use of some portions of an address space
— example: read-only memory
— approach (paging):
+ Include read-only flag in each page table entry
x MMU raises exception on attempt to write to a read-only page

CS350 Operating Systems Fall 2003

Memory Management 13

Roles of the Operating System and the MMU (Summary)

e Operating system:
— save/restore MMU state on context switches
— handle exceptions raised by the MM U

— manage and allocate physical memory

e MMU (hardware):
— trandate virtual addresses to physical addresses
— check for protection violations

— raise exceptions when necessary

CS350 Operating Systems Fall 2003

Memory Management 14

Speed of Address Translation

e Execution of each machine instruction may involve one, two or more memory
operations

— oneto fetch instruction
— one or more for instruction operands
e Addresstrandlation through a page table adds one extra memory operation

(for page table entry lookup) for each memory operation performed during
Instruction execution

— Simple address trand ation through a page table can cut instruction
execution rate in half.

— More complex translation schemes (e.g., multi-level paging) are even
more expensive.

e Solution: include a Trangdlation Lookaside Buffer (TLB) inthe MMU
— TLB isafadt, fully associative address translation cache

— TLB hit avoids page table lookup

CS350 Operating Systems Fall 2003

Memory Management 15

TLB

e Each entry inthe TLB contains a (page number,frame number) pair, plus
copies of some or all of the page’s protection bits, use bit, and dirty bit.

e |f address trandation can be accomplished using a TLB entry, access to the
page table is avoided.

e TLB lookup is much faster than a memory access. TLB is an associative
memory - page numbers of all entries are checked simultaneously for a match.
However, the TLB istypically small (10% to 102 entries).

e Otherwise, trandate through the page table, and add the resulting translation
to the TLB, replacing an existing entry if necessary. In ahardware controlled
TLB, thisisdone by the MMU. In a software controlled TLB, it is done by the
kernel.

e On acontext switch, the kernel must clear or invalidate the TLB. (Why?)

CS350 Operating Systems Fall 2003

Memory Management

16

Segmentation

e An OSthat supports segmentation (e.g., Multics, OS/2) can provide more than
one address space to each process.

e Theindividual address spaces are called segments.

e A logical address consists of two parts:

(segment 1D, address within segment)

e Each segment:

— can grow or shrink independently of the other segments

— has its own memory protection attributes

e For example, process could use separate segments for code, data, and stack.

CS350

Operating Systems

Fall 2003

Memory Management

17

segment O

segment 1

segment 2

segment O

Segmented Address Space Diagram

0

o

o

Proc 1

Proc 2

physical memory
0

CS350

Operating Systems

Fall 2003

Memory Management 18

Mechanism for Translating Segmented Addresses

physical address

~<— m bits —>

virtual address
~— v hits—>
seg# | offset >\+
A
segment table

'l

—~<~— mbits —>

segment table base
register

length \ start

protection

This trand ation mechanism requires physically contiguous alloca-
tion of segments.

CS350 Operating Systems Fall 2003

Memory Management 19
Combining Segmentation and Paging
Proc 1 physical memory
0 0
segment O
0
cment 1 [
0
Proc 2
segment O
m
2 -1
CS350 Operating Systems Fall 2003

Memory Management

Combining Segmentation and Paging: Translation Mechanism

virtual address physical address
- v bits —> ~<— mbits —>
Seg # page# | offset frame# | offset
A
segment table page table
I~ T T T T T o oo *T (el Al "I
I |
—~<— mbits —>
segment table base
register
page table
length
protection
CS350 Operating Systems Fall 2003

Memory Management 21

Simulating Segmentation with Paging

virtual address space

—— -l—— -l——
code data invalid stack 1 invalid stack 2
pages pages

CS350 Operating Systems Fall 2003

Memory Management

22

Shared Virtual Memory

e virtual memory sharing allows parts of two or more address spaces to overlap

e shared virtual memory is:

— away to use physical memory more efficiently, e.g., one copy of a
program can be shared by severa processes

— amechanism for interprocess communication

e sharing is accomplished by mapping virtual addresses from several processes
to the same physical addressed

e unit of sharing can be a page or a segment

CS350

Operating Systems

Fall 2003

Memory Management 23
Shared Pages Diagram
Proc1l virtual address space physical memory
0 0
max1
0
max2 *
Proc 2
virtual address space
m
2 -]
CS350 Operating Systems Fall 2003

Memory Management 24
Shared Segments Diagram
Proc 1 physical memory
0 0
segment O
(shared) \
0
.
0
Proc 2
segment O
segment 1
(shared) m
2 -1
CS350 Operating Systems Fall 2003

Memory Management 25

An Address Space for the Kernel

Option 1: Kernel in physical space
e mechanism: disable MMU in system mode, enable it in user mode
e accessing process address spaces. OS must interpret process page tables

e OS must be entirely memory resident

Option 2: Kernel in separate logical space
e mechanism: MMU has separate state for user and system modes
e accessing process address spaces. difficult

e portions of the OS may be non-resident

Option 3: Kernel shares logical space with each process
e memory protection mechanism is used to isolate the OS

e accessing process address space: easy (process and kernel share the same
address space)

e portions of the OS may be non-resident

CS350 Operating Systems Fall 2003

Memory Management 26

The Kernel in Process’ Address Spaces

Kernel
(shared, protected)

Process 1 Process 2
Address Space Address Space

Attemptsto access kernel code/datain user mode result in memory
protection exceptions, not invalid address exceptions.

CS350 Operating Systems Fall 2003

Memory Management 27

Memory Management Interface

e much memory allocation isimplicit, e.qg.:
— allocation for address space of new process
— Implicit stack growth on overflow
e OS may support explicit reguests to grow/shrink address space, e.g., Unix
br k system call.
e shared virtua memory (ssmplified Solaris example):
Create: shm d = shnget (key, si ze)
Attach: vaddr = shmat (shm d, vaddr)
Detach: shndt (vaddr)
Delete: shntt | (shm d, | PC.RM D)

CS350 Operating Systems Fall 2003

