
NachOS 1

What is NachOS?

workstation simulator: the simulated workstation includes a MIPS processor,

main memory, and a collection of devices including a timer, disk(s), a network

interface, and input and output consoles.

operating system: the NachOS operating system manages the simulated

workstation, and implements a set of system calls for user programs

user programs: NachOS user programs run on the simulated machine, and use

services provided by the NachOS operating system

CS350 Operating Systems Fall 2003



NachOS 2

How does NachOS differ from a “real” OS?

• The NachOS operating system runs beside the simulated workstation, not on

it. This means that the operating system and user programs (which run on the

simulated workstation) do not share system resources.

• The NachOS operating system controls simulated devices through a set of

abstract device interfaces. Instead of executing special I/O instructions or

writing codes into device control registers, the operating system calls methods

like Disk::ReadRequest.

CS350 Operating Systems Fall 2003



NachOS 3

NachOS Thread Facilities

Threads: new threads can be created, and threads can be destroyed. Each new

thread executes a kernel procedure that is specified when the thread is created.

(threads/thread.*)

Scheduling: a round-robin ready queue for threads (threads/scheduler.*)

Synchronization: semaphores, locks, and condition variables. These are

integrated with the scheduler: blocked threads are kept off of the ready queue,

unblocked threads are placed back onto the ready queue.

(threads/synch.*)

CS350 Operating Systems Fall 2003



NachOS 4

Birth of a NachOS Process

• the creator does:

1. update the process table

2. create and initialize an address space (allocate physical memory, set up

page table, load user program and data into allocated space)

3. create a new thread and put it on the ready queue. The new thread executes

the kernel function ProcessStartup.

• the ProcessStartup function does:

1. Initialize the registers of the simulated machine (page table pointer,

program counter, stack pointer, and general registers)

2. Call Machine::Run. This call never returns.

Machine::Run starts simulation of the user program. This cor-

responds to an exception return in a real system. The thread is now

simulating the execution of user program code. That is, it is in user

mode.

CS350 Operating Systems Fall 2003



NachOS 5

System Calls

• to perform a system call, a user program executes a MIPS syscall

instruction, as usual.

• to simulate the syscall instruction, the simulator’s Machine::Run

method (indirectly) calls the kernel’s ExceptionHandler function.

(userprog/exception.cc)

• ExceptionHandler performs any kernel operations that are needed to

implement the system call.

• When ExceptionHandler returns, control goes back the

Machine::Run and the user program simulation picks up from where it left

off, just as in real life.

The call to ExceptionHandler is the switch from user mode

to system mode. The return from ExceptionHandler to

Machine::Run is the switch from system mode back to user

mode.

CS350 Operating Systems Fall 2003



NachOS 6

Exceptions and Interrupts

Exceptions: Exceptions are handled in the same way as system calls. If an user

program instruction causes an exception, the simulator (Machine::Run)

calls ExceptionHandler so that it can be handled by the kernel

Interrupts:

• The simulator keeps track of the simulation time at which device interrupts

are supposed to occur.

• After simulating each user instruction, the simulator advances simulation

time and determines whether interrupts are pending from any devices.

• If so, the simulator (Machine::Run) calls the kernel’s handler for that

interrupt before executing the next instruction.

• When the kernel’s handler returns, the simulation continues executing

instructions.

The kernel has a handler function for each type of interrupt (timer,

disk, console input, console output, network).

CS350 Operating Systems Fall 2003



NachOS 7

Context Switches in NachOS

• The user context of a thread can be saved in the thread object.

• The thread’s user context includes the values in the registers of the simulated

machine, including the program counter and the stack pointer.

• When switching from one thread to another, the kernel:

– saves the old thread’s user context

– restores the new thread’s user context

• When the new thread returns to user mode, its own user context is in the

simulated machine’s registers.

CS350 Operating Systems Fall 2003



NachOS 8

NachOS Thread Scheduling

runingready

blockedcreated

Thread::Yield

Thread::Sleep

Scheduler::Run

Thread::Fork

Scheduler::ReadyToRun

CS350 Operating Systems Fall 2003



NachOS 9

Address Spaces

• One AddrSpace object per NachOS process.

• AddrSpace maintains the process page table, and provides methods for

reading and writing data from virtual addresses.

• NachOS page table entry:

class TranslationEntry

public:

int virtualPage; // page number

int physicalPage; // frame number

bool valid; // is this entry valid?

bool readOnly; // is page read-only?

bool use; // used by replacement alg

bool dirty; // used by replacement alg

;

CS350 Operating Systems Fall 2003



NachOS 10

Address Space Layout

0 max

addresses

Code Read−Only
Data

Initialized

Uninitialized

Stack
Data

Data

• Size of each segment except stack is specified in noff file

• Code, read-only data and initialized data segments are initialized from the

noff file. Remaining segments are initially zero-filled.

• Segments are page aligned.

CS350 Operating Systems Fall 2003



NachOS 11

NachOS Workstation Devices

• like many real devices, the NachOS workstation’s simulated devices are

asynchronous, which means that they use interrupts to notify the kernel that a

requested operation has been completed, or that a new operation is possible.

For example:

– the input console (keyboard) generates an interrupt each time a new input

character is available

– the output console (display) can only output one character at a time. It

generates an interrupt when it is ready to accept another character for

output.

– the disk accepts one read/write request at a time. It generates an interrupt

when the request has been completed.

• the kernel implementssynchronous interfaces to each of these devices

– implemented using the synchronization primitives

– synchronous interfaces are much easier for the rest of the kernel to use

than the asynchronous interfaces. Use them!

CS350 Operating Systems Fall 2003



NachOS 12

Example: Synchronous Input Console

• SynchConsoleInput::GetChar() returns one character from the

console, and causes the calling thread toblock (until a character is available) if

there are no available input characters.

• Implementation uses a single semaphore:

– SynchConsoleInput::GetChar() does aP() before attempting

to read a character from the input console.

– Input console interrupt handler does aV()

CS350 Operating Systems Fall 2003



NachOS 13

The NachOS Stub File System

• NachOS has two file system implementations.

– The real file system has very limited functionality. Files are stored on the

workstation’s simulated disk.

– The “stub” file system stores files outside of the simulated machine, in the

file system of the machine on which NachOS is running. Magic!

• Until Asst 3, the “stub” file system is used. This is why a file that is created by

a NachOS user program appears on the machine on which NachOS is running.

This is also why NachOS user programs can be stored in files on host

machine, and not on the simulated workstation.

• The “stub” file system is a temporary, unrealistic convenience.

CS350 Operating Systems Fall 2003


