
Processes and Threads 1

What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of

• an address space

• a thread (possibly several threads)

• other resources associated with the running program. For example:

– open files

– sockets

– attributes, such as a name (process identifier)

– . . .

A process with one thread is a sequential process. A process with

more than one thread is a concurrent process.

CS350 Operating Systems Fall 2003

Processes and Threads 2

What is an Address Space?

• For now, think of an address space as a portion of the primary memory of the

machine that is used to hold the code, data, and stack(s) of the running

program.

• For example:

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����
����
����

����
����
����

���
���
���
���

���
���
���
���

0

Code Data Stack1 Stack2

max
addresses

• We will elaborate on this later.

CS350 Operating Systems Fall 2003

Processes and Threads 3

What is a Thread?

• A thread represents the control state of an executing program.

• Each thread has an associated context, which consists of

– the values of the processor’s registers, including the program counter (PC)

and stack pointer

– other processor state, including execution privilege or mode (user/system)

– a stack, which is located in the address space of the thread’s process

CS350 Operating Systems Fall 2003

Processes and Threads 4

The Operating System and the Kernel

• We will use the following terminology:

kernel: The operating system kernel is the part of the operating system that

responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and

may include other related programs that provide services for applications.

This may include things like:

– utility programs

– command interpreters

– programming libraries

CS350 Operating Systems Fall 2003

Processes and Threads 5

The OS Kernel

• Usually kernel code runs in a privileged execution mode, while the rest of the

operating system does not.

• The kernel is a program. It has code and data like any other program.

• For now, think of the kernel as a program that resides in its own address space,

separate from the address spaces of processes that are running on the system.

Later, we will elaborate on the relationship between the kernel’s address space

and process address spaces.

CS350 Operating Systems Fall 2003

Processes and Threads 6

Kernel Privilege, Kernel Protection

• What does it mean to run in privileged mode?

• Kernel uses privilege to

– control hardware

– protect and isolate itself from processes

• privileges vary from platform to platform, but may include:

– ability to execute special instructions (like halt)

– ability to manipulate processor state (like execution mode)

• kernel ensures that it is isolated from processes. No process can execute or

change kernel code, or read or write kernel data, except through controlled

mechanisms like system calls.

CS350 Operating Systems Fall 2003

Processes and Threads 7

System Calls

• System calls are the interface between processes and the kernel.

• A process uses system calls to request services operating system services.

• From point of view of the process, these services are used to manipulate the

abstractions that are part of its execution environment. For example, a process

might use a system call to

– open a file

– send a message over a pipe

– create another process

– increase the size of its address space

CS350 Operating Systems Fall 2003

Processes and Threads 8

How System Calls Work

• The hardware provides a mechanism that a running program can use to cause

a system call. Often, it is a special instruction, e.g., the MIPS syscall

instruction.

• What happens on a system call:

– key parts of the current thread context, like the program counter and the

stack pointer, are saved

– the processor is switched to system (privileged) execution mode

– the thread context is changed so that:

∗ the program counter is set to a fixed (determined by the hardware)

memory address, which is within the kernel’s address space

∗ the stack pointer is pointed at a stack in the kernel’s address space

CS350 Operating Systems Fall 2003

Processes and Threads 9

System Call Execution and Return

• Once a system call occurs, the calling thread will be executing a system call

handler, which is part of the kernel, in system mode.

• The kernel’s handler determines which service the calling process wanted, and

performs that service.

• When the kernel is finished, it returns from the system call. This means:

– switch the processor back to unprivileged (user) execution mode

– restore the key parts of the thread context that were saved when the system

call was made

• Now the thread is executing the calling process’ program again, picking up

where it left off when it made the system call.

CS350 Operating Systems Fall 2003

Processes and Threads 10

System Call Diagram

Process Kernel

time

system call return

system call

thread
execution
path

CS350 Operating Systems Fall 2003

Processes and Threads 11

Exceptions

• Exceptions are another way that control is transferred from a process to the

kernel.

• Exceptions are conditions that occur during the execution of an instruction by

a process. For example:

– arithmetic error, e.g, overflow

– illegal instruction

– memory protection violation

– page fault (to be discussed later)

• exceptions are detected by the hardware

CS350 Operating Systems Fall 2003

Processes and Threads 12

Exceptions (cont’d)

• when an exception occurs, control is transferred (by the hardware) to a fixed

address in the kernel

• transfer of control happens in much the same way as it does for a system call.

(In fact, a system call can be thought of as a type of exception, and they are

sometimes implemented that way.)

• in the kernel, an exception handler determines which exception has occurred

and what to do about it. For example, it may choose to destroy a process that

attempts to execute an illegal instruction.

CS350 Operating Systems Fall 2003

Processes and Threads 13

Interrupts

• Interrupts are a third mechanism by which control may be transferred to the

kernel

• Interrupts are similar to exceptions. However, they are caused by hardware

devices, not by the execution of a program. For example:

– a network interface may generate an interrupt when a network packet

arrives

– a disk controller may generate an interrupt to indicate that it has finished

writing data to the disk

– a timer may generate an interrupt to indicate that time has passed

• Interrupt handling is similar to exception handling - current execution context

is saved, and control is transferred to a kernel interrupt handler at a fixed

address.

CS350 Operating Systems Fall 2003

Processes and Threads 14

Multiprogramming

• multiprogramming means having multiple processes existing at the same time

• most modern, general purpose operating systems support multiprogramming

• all processes share the available hardware resources, with the sharing

coordinated by the operating system:

– Each process uses some of the available memory to hold its address space.

The OS decides which memory and how much memory each process gets

– OS can coordinate shared access to devices (keyboards, disks), since

processes use these devices indirectly, by making system calls.

– Processes timeshare the processor(s). Again, timesharing is controlled by

the operating system.

• OS ensures that processes are isolated from one another. Interprocess

communication should be possible, but only at the explicit request of the

processes involved.

CS350 Operating Systems Fall 2003

Processes and Threads 15

Process Creation Multiprogramming Example (Step 1)

KernelProcess A

(CreateProcess)
system call

Parent process (Process A) requests creation of a new process.

CS350 Operating Systems Fall 2003

Processes and Threads 16

Process Creation Multiprogramming Example (Step 2)

KernelProcess A

(CreateProcess)
system call

Process B

Kernel creates child process (Process B).

CS350 Operating Systems Fall 2003

Processes and Threads 17

Process Creation Multiprogramming Example (Step 3)

KernelProcess A

(CreateProcess)
system call

Process B

Kernel allows child process to run, switches execution context to Process B.

context switch

A’s thread is
ready, not running

CS350 Operating Systems Fall 2003

Processes and Threads 18

Process Creation Multiprogramming Example (Step 4)

KernelProcess A

(CreateProcess)
system call

Process B

system call

Process B later makes a system call.

context switch

CS350 Operating Systems Fall 2003

Processes and Threads 19

Process Creation Multiprogramming Example (Step 5)

KernelProcess A

(CreateProcess)
system call

Process B

system call

Kernel decides Process A will run, switches context again.

B’s thread is
ready, not running

context switch

CS350 Operating Systems Fall 2003

Processes and Threads 20

Process Interface

• A running programs may use process-related system calls to manipulate its

own process, or other processes in the system.

• The process interface will usually include:

Creation: make new processes, e.g., Exec in Nachos

Destruction: terminate a process, e.g., Exit in Nachos

Synchronization: wait for some event, e.g., Join in Nachos

Attribute Mgmt: read or change process attributes, such as the process

identifier or owner or scheduling priority

CS350 Operating Systems Fall 2003

Processes and Threads 21

The Process Model

• Although the general operations supported by the process interface are

straightforward, there are some less obvious aspects of process behaviour that

must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?

What is in the address space? What is the initial thread context? Does it

have any other resources?

Multithreading: Are concurrent processes supported, or is each process

limited to a single thread.

Inter-Process Relationships: Are there relationships among processes, e.g,

parent/child? If so, what do these relationships mean?

CS350 Operating Systems Fall 2003

Processes and Threads 22

Implementation of Processes

• The kernel maintains information about all of the processes in the system.

• This information is sometimes said to comprise the process control block

(PCB). In practice, however, information about a process may not all be

located in a single data structure.

• Per-process information may include:

– process identifier and owner

– current process state and other scheduling information

– lists of available resources, such as open files

– accounting information

– and more

CS350 Operating Systems Fall 2003

Processes and Threads 23

Example: The Nachos Process Table

class Process{

...

private:

AddrSpace addressSpace; // address space info

Process* parent; // parent reference

List<Thread*> threads; // our threads

IdHash<Process> childProcess; // our children

HashTable<OpenFileId, OpenFile*> openFiles;

unsigned int id; // process id

int exitstatus; // exit status

bool exiting; // have we exited?

std::string name; // program code file

std::vector<std::string> arguments; // arguments

...

}

CS350 Operating Systems Fall 2003

Processes and Threads 24

Processor Scheduling Basics

• Only one thread at a time can run on a processor.

• Processor scheduling means deciding how threads should share the available

processor(s)

• Round-robin is a simple preemptive scheduling policy:

– the kernel maintains a list of ready threads

– the first thread on the list is dispatched (allowed to run)

– when the running thread has run for a certain amount of time, called the

scheduling quantum, it is preempted

– the preempted thread goes to the back of the ready list, and the thread at

the front of the list is dispatched.

• More on scheduling policies later.

CS350 Operating Systems Fall 2003

Processes and Threads 25

Implementing Preemptive Scheduling

• The kernel uses interrupts from the system timer to measure the passage of

time and to determine whether the running process’s quantum has expired.

• All interrupts transfer control from the running program to the kernel.

• In the case of a timer interrupt, this transfer of control gives the kernel the

opportunity to preempt the running thread and dispatch a new one.

CS350 Operating Systems Fall 2003

Processes and Threads 26

Using Timer Interrupts to Timeshare (Example)

KernelProcess A Process B

context
switches

timer interrupt

interrupt return

ready thread

running thread

Key:

CS350 Operating Systems Fall 2003

Processes and Threads 27

Blocked Threads

• Sometimes a thread will need to wait for an event. Examples:

– wait for data from a (relatively) slow disk

– wait for input from a keyboard

– wait for another thread to leave a critical section

– wait for busy device to become idle

• The OS scheduler should only allocate the processor to threads that are not

blocked, since blocked threads have nothing to do while they are blocked.

Multiprogramming makes it easier to keep the processor busy even

though individual threads are not always ready.

CS350 Operating Systems Fall 2003

Processes and Threads 28

Implementing Blocking

• The need for waiting normally arises during the execution of a system call by

the thread, since programs use devices through the kernel (by making system

calls).

• When the kernel recognizes that a thread faces a delay, it can block that

thread. This means:

– mark the thread as blocked, don’t put it on the ready queue

– choose a ready thread to run, and dispatch it

– when the desired event occurs, put the blocked thread back on the ready

queue so that it will (eventually) be chosen to run

CS350 Operating Systems Fall 2003

Processes and Threads 29

Thread States

• a very simple process state transition diagram

runingready

blocked

dispatch

need resource or eventgot resource or event

quantum expires

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Fall 2003

Processes and Threads 30

Summary of Hardware Features Used by the Kernel

Interrupts and Exceptions, such as timer interrupts, give the kernel the

opportunity to regain control from user programs.

Memory management features, such as memory protection, allow the kernel to

protect its address space from user programs.

Privileged execution mode allows the kernel to reserve critical machine

functions (e.g, halt) for its own use.

Independent I/O devices allow the kernel to schedule other work while I/O

operations are on-going.

CS350 Operating Systems Fall 2003

Processes and Threads 31

User-Level Threads

• It is possible to implement threading at the the user level.

• This means threads are implemented outside of the operating system, within a

process.

• Call these user-level threads to distinguish them from kernel threads, which

are those implemented by the operating system.

• A user-level thread library will include procedures for

– creating threads

– terminating threads

– yielding (voluntarily giving up the processor)

– synchronization

In other words, similar operations to those provided by the operating system

for kernel threads.

CS350 Operating Systems Fall 2003

Processes and Threads 32

User-Level and Kernel Threads

• There are two general ways to implement user-level threads

1. Multiple user-level thread contexts in a process with one kernel thread.

(N:1)

– Kernel thread can “use” only one user-level thread context at a time.

– Switching between user threads in the same process is non-preemptive.

– Blocking system calls block the kernel thread, and hence all user

threads in that process.

2. Multiple user-level thread contexts in a process with multiple kernel

threads. (N:M)

– Each kernel thread “uses” one user-level thread context.

– Switching between threads in the same process can be preemptive.

– Process can make progress if at least one of its kernel threads is not

blocked.

CS350 Operating Systems Fall 2003

Processes and Threads 33

Two User Threads, One Kernel Thread (N:1 Example)

Kernel Process B

timer interrupt

ready thread

running thread

Key:user thread
yields

Process A

User
Thread 2

User
Thread 1

Process A has two user-level threads, but only one kernel thread.

CS350 Operating Systems Fall 2003

Processes and Threads 34

User Thread Blocking (N:1 Example)

Kernel Process B

timer interrupt

ready thread

running thread

Key:

Process A

User
Thread 2

User
Thread 1

system call
(blocking)

blocked thread

device interrupt unblocks Process A thread

Process B thread starts
a second quantum

Once Process A’s thread blocks, only Process B’s thread can run.

CS350 Operating Systems Fall 2003

Processes and Threads 35

Two User Threads, Two Kernel Threads (N:M Example)

Kernel Process B

timer interrupt

ready thread

running thread

Key:

Process A

User
Thread 2

User
Thread 1

system call

blocked thread

first Process A
thread blocks

second Process A
thread runs

Process B thread
quantum expires

CS350 Operating Systems Fall 2003

