
Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each

processor.

• On uniprocessors, only one thread executes at a time. However, because of

preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on unipro-

cessors.

CS350 Operating Systems Fall 2003

Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a variety of ways:

– Threads share access (though the operating system) to system devices.

– Threads in the same process share access to program variables in their

process’s address space.

• A common synchronization problem is to enforcemutual exclusion, which

means making sure that only thread at a time uses a shared object, e.g., a

variable or a device.

• The part of a program in which the shared object is accessed is called a

critical section.

CS350 Operating Systems Fall 2003

Synchronization 3

Critical Section Example

int IntList::RemoveFront() {
ListElement *element = first;

ASSERT(!IsEmpty());

int num = first->item;

if (first == last) { first = last = NULL; }
else { first = element->next; }
numInList--;

delete element;

return num;

}

The RemoveFront method is a critical section. It may not

work properly if two threads call it at the same time on the same

IntList. (Why?)

CS350 Operating Systems Fall 2003

Synchronization 4

Dekker’s Mutual Exclusion Algorithm

boolean flag[2]; /* shared, initially false */

int turn; /* shared */

flag[i] = true; /* in one process, i = 0 and j = 1 */

turn = j; /* in the other, i = 1 and j = 0 */

while (flag[j] && turn == j); /* busy wait */

critical section /* e.g., call to RemoveFront */

flag[i] = false

Ensures mutual exclusion and avoids starvation, but works only for

two processes. (Why?)

CS350 Operating Systems Fall 2003

Synchronization 5

Lamport’s Bakery Algorithm

boolean choosing[n]; /* shared, initially false */

int number[n]; /* shared, initially zero */

choosing[i] = true;

number[i] = max(number[0],...,number[n-1]) + 1;

choosing[i] = false;

for (j=0; j < n; j++) {
while (choosing[j]);

while ((number[j] != 0)&&

((number[j] < number[i]) ||

((number[j] == number[i]) && (j < i)))); }

critical section /* e.g., call to RemoveFront */

number[i] = 0;

CS350 Operating Systems Fall 2003

Synchronization 6

Mutual Exclusion Using Special Instructions

• Software solutions to the critical section problem (e.g., Dekker’s algorithm or

Lamport’s algorithm) assume only atomic load and atomic store.

• Simpler algorithms are possible if more complexatomic operations are

supported by the hardware. For example:

Test and Set: set the value of a variable, and return the old value

Swap: swap the values of two variables

• On uniprocessors, mutual exclusion can also be achieved by disabling

interrupts during the critical section. (Normally, user programs cannot do this,

but the kernel can.)

CS350 Operating Systems Fall 2003

Synchronization 7

Mutual Exclusion with Test and Set

boolean lock; /* shared, initially false */

while (TestAndSet(&lock,true)); /* busy wait */

critical section /* e.g., call to RemoveFront */

lock = false;

Works for any number of threads, but starvation is a possibility.

CS350 Operating Systems Fall 2003

Synchronization 8

Semaphores

• a semaphore is a synchronization primitive that can be used to solve the

critical section problem, and many other synchronization problems too

• a semaphore is an object that has an integer value, and that support two

operations

P: if the semaphore value is non-zero, decrement the value. Otherwise, wait

until the value is non-zero and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores: can take on any non-negative value

binary semaphores: take on only the values0 and1. (V on a binary

semaphore with value1 has no effect.)

By definition, theP andV operations of a semaphore areatomic.

CS350 Operating Systems Fall 2003

Synchronization 9

Mutual Exclusion Using a Binary Semaphore

binarySemaphore s; /* initial value is 1 */

P(s);

critical section /* e.g., call to RemoveFront */

V(s);

CS350 Operating Systems Fall 2003

Synchronization 10

Producer/Consumer Using a Counting Semaphore

countingSemaphore s; /* initial value is 0 */

item buffer[infinite]; /* huge buffer, initially empty */

Producer’s Pseudo-code:

add item to buffer

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from buffer

If mutual exclusion is required for adding and removing items from

the buffer, this can be provided using a second semaphore. (How?)

CS350 Operating Systems Fall 2003

Synchronization 11

Producer/Consumer with a Bounded Buffer

countingSemaphore full; /* initial value is 0 */

countingSemaphore empty; /* initial value is N */

item buffer[N]; /* buffer with capacity N */

Producer’s Pseudo-code:

P(empty);

add item to buffer

V(full);

Consumer’s Pseudo-code:

P(full);

remove item from buffer

V(empty);

CS350 Operating Systems Fall 2003

Synchronization 12

Implementing Semaphores

void P(s) {
start critical section

while (s == 0) { /* busy wait */

end critical section

start critical section }
s = s - 1;

end critical section }

void V(s) {
start critical section

s = s + 1;

end critical section }

Any mutual exclusion technique (e.g., Dekker, Lamport, test and

set) can be used to protect the critical sections. However, starvation

is possible with this implementation.

CS350 Operating Systems Fall 2003

Synchronization 13

Implementing Semaphores in the Kernel

• Semaphores can be implemented at user level, e.g., as part of a user-level

thread library.

• Semaphores can also be implemented by the kernel:

– for its own use, for synchronizing threads in the kernel

– for use by application programs, if a semaphore system call interface is

provided

• An advantage to kernel implementations is that semaphores can be integrated

with the thread scheduler:

– threads can be made to block, rather than busy wait, in theP operation

– theV operation can make blocked threads ready

CS350 Operating Systems Fall 2003

Synchronization 14

Nachos Semaphore Class

class Semaphore {
public:

Semaphore(char* debugName, int initialValue);

˜Semaphore();

char* getName() { return name;}
void P();

void V();

void SelfTest();

private:

char* name; // useful for debugging

int value; // semaphore value, always >= 0

List<Thread *> *queue;

};

CS350 Operating Systems Fall 2003

Synchronization 15

Nachos Semaphore P()

void Semaphore::P() {
Interrupt *interrupt = kernel->interrupt;

Thread *currentThread = kernel->currentThread;

IntStatus oldLevel = interrupt->SetLevel(IntOff);

if(value <= 0) {
queue->Append(currentThread);

currentThread->Sleep(FALSE);

} else { value--; }
(void) interrupt->SetLevel(oldLevel);

}

CS350 Operating Systems Fall 2003

Synchronization 16

Nachos Semaphore V()

void Semaphore::V() {
Interrupt *interrupt = kernel->interrupt;

IntStatus oldLevel = interrupt->SetLevel(IntOff);

if (!queue->IsEmpty()) {
kernel->scheduler->ReadyToRun(queue->RemoveFront());

} else { value++; }
(void) interrupt->SetLevel(oldLevel);

}

CS350 Operating Systems Fall 2003

Synchronization 17

Monitors

• a monitor is a programming language construct that supports synchronized

access to data

• a monitor is essentially an object for which

– object state is accessible only through the object’s methods

– only one method may be active at a time

• if two threads attempt to execute methods at the same time, one will be

blocked until the other finishes

• inside of a monitor, so calledcondition variables can be declared and used

CS350 Operating Systems Fall 2003

Synchronization 18

Condition Variable

• a condition variable is an object that support two operations:

wait: causes the calling thread to block, and to release the monitor

signal: if threads are blocked on the signaled condition variable then unblock

one of them, otherwise do nothing

• a thread that has been unblocked bysignal is outside of the monitor and it

must wait to re-enter the monitor before proceeding.

• in particular, it must wait for the thread that signalled it

This describes Mesa-type monitors. There are other types on mon-

itors, notably Hoare monitors, with different semantics forwait

andsignal.

CS350 Operating Systems Fall 2003

Synchronization 19

Bounded Buffer Using a Monitor

item buffer[N]; /* buffer with capacity N */

int count; /* initially 0 */

condition notfull,notempty;

Produce(item) {
while (count == N) { wait(notfull); }
add item to buffer

count = count + 1;

signal(notempty);

}

CS350 Operating Systems Fall 2003

Synchronization 20

Bounded Buffer Using a Monitor (cont’d)

Consume(item) {
while (count == 0) { wait(notempty); }
remove item from buffer

count = count - 1;

signal(notfull);

}

Notice thatwhile, rather thanif, is used in bothProduce and

Consume. This is important. (Why?)

CS350 Operating Systems Fall 2003

Synchronization 21

Nachos Locks and Condition Variables (Example)

item buffer[N]; /* buffer with capacity N */

int count; /* initially 0 */

Condition notfull,notempty;

Lock mutex;

Produce(item) {
mutex.Acquire();

while (count == N) {
notfull.Wait(mutex); mutex.Acquire(); }

add item to buffer

count = count + 1;

notempty.Signal(mutex);

mutex.Release();

}

Nachos locks and condition variables can be used to approximate

a monitor. (The example above is pseudo-code.)

CS350 Operating Systems Fall 2003

Synchronization 22

Deadlocks

• A simple example. Suppose a machine has64MB of memory. The following

sequence of events occurs.

1. ProcessA starts, using30MB of memory.

2. ProcessB starts, also using30MB of memory.

3. ProcessA requests an additional8MB of memory. The kernel blocks

processA’s thread, since there is only4 MB of available memory.

4. ProcessB requests an additional5MB of memory. The kernel blocks

processB’s thread, since there is not enough memory available.

These two processes aredeadlocked - neither process can make

progress. Waiting will not resolve the deadlock. The processes are

permanently stuck.

CS350 Operating Systems Fall 2003

Synchronization 23

Resource Allocation Graph (Example)

P1 P2 P3

R1 R2 R3

R4 R5

resource request resource allocation

Is there a deadlock in this system?

CS350 Operating Systems Fall 2003

Synchronization 24

Resource Allocation Graph (Another Example)

P1 P2 P3

R1 R2 R3

R4 R5

Is there a deadlock in this system?

CS350 Operating Systems Fall 2003

Synchronization 25

Coping with Deadlocks

Prevention: constrain process behaviour so that deadlocks are impossible

Avoidance: demand advance declaration of process’s maximum resource

requirements, and admit a new process only if it cannot cause a deadlock

Detection and Recovery: allow deadlocks to occur, but check for them and

correct them if they do occur

CS350 Operating Systems Fall 2003

Synchronization 26

Deadlock Prevention

No Hold and Wait: prevent a process from requesting resources if it currently

has resources allocated to it. A process may hold several resources, but to do

so it must make a single request for all of them.

Preemption: to wait for a resource, a process must release and (after waiting)

re-acquire any resources it currently holds.

Resource Ordering: Order (e.g., number) the resource types, and require that

each process acquire resources in increasing resource type order. That is, a

process may make no requests for resources of type less than or equal toi

once the process has requested resources of typei.

CS350 Operating Systems Fall 2003

Synchronization 27

Deadlock Avoidance

• In deadlock avoidance algorithms, each process must declare the maximum

number of resources of each type that it will need.

• Consider a very simple example:

– One resource type, with four instances.

– Three processes,Pa, Pb, Pc

– Maximum resource requirement of each process is three instances.

• Deadlock avoidance algorithms try to keep the system in asafe state.

– Safe states are those from which the system has a way to eventually

provide each process with its declared maximum resource allocation.

– From any unsafe state, the systemmay be unable to avoid a future

deadlock, depending on which resources each process actually requests.

CS350 Operating Systems Fall 2003

Synchronization 28

Safe and Unsafe States (Example)

• Initially, none of the processes have been allocated any resources. This is a

safe state. (Why?)

• Suppose that processPa then requests and is allocated two instances of the

resource. The system is still in a safe state. (Why?)

• Suppose that processPb then requests and is allocated the remaining two

instances of the resource. The system is now in anunsafe state because:

– Pa may request one more resource instance

– Pb may request one more resource instance

– if both of these requests occur, the system will be deadlocked.

• HadPb requested once instance of the resource rather than two, the system

could have granted the request and remained in a safe state.

CS350 Operating Systems Fall 2003

Synchronization 29

The Banker’s Algorithm

• Give the concept of safe states, the main idea of the Banker’s algorithm is

simple: the system grants a resource request only if the state that would result

from that request is safe.

• In the example on the previous slide, the Banker’s Algorithm would denyPb’s

request for two instances of the resource. (ProcessPb would instead be forced

to wait.)

• The previous example is very simple, because it uses only one type of

resource. The Banker’s Algorithm can work with multiple resource types. The

textbook gives an example.

CS350 Operating Systems Fall 2003

Synchronization 30

Deadlock Detection and Correction

• main idea: the system maintains the resource allocation graph and tests it to

determine whether there is a deadlock. If there is, the system must recover

from the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the

processes involved in the deadlock

• when to test for deadlocks? Can test on every resource request, or can simply

test periodically. Deadlocks persist, so periodic detection will not “miss”

them.

Deadlock detection and deadlock correction are both costly. This

approach makes sense only if deadlocks are expected to be infre-

quent.

CS350 Operating Systems Fall 2003

Synchronization 31

Detecting Deadlock in a Resource Allocation Graph

• System State Notation:

– Ri: request vector for processPi

– Ai: current allocation vector for processPi

– U : unallocated (available) resource vector

• Additional Algorithm Notation:

– T : scratch resource vector

– fi: algorithm is finished with processPi? (boolean)

CS350 Operating Systems Fall 2003

Synchronization 32

Detecting Deadlock (cont’d)

/* initialization */

T = U

fi is false if Ai > 0, else true

/* can each process finish? */

while ∃ i (¬ fi ∧ Ri ≤ T) {
T = T + Ai;

fi = true

}
/* if not, there is a deadlock */

if ∃ i (¬ fi) then report deadlock

else report no deadlock

CS350 Operating Systems Fall 2003

Synchronization 33

Deadlock Detection, Positive Example

• R1 = (0, 1, 0, 0, 0)

• R2 = (0, 0, 0, 0, 1)

• R3 = (0, 1, 0, 0, 0)

• A1 = (1, 0, 0, 0, 0)

• A2 = (0, 2, 0, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 1, 1, 0)

The deadlock detection algorithm will terminate withf1 ==
f2 == f3 == false, so this system is deadlocked.

CS350 Operating Systems Fall 2003

Synchronization 34

Deadlock Detection, Negative Example

• R1 = (0, 1, 0, 0, 0)

• R2 = (1, 0, 0, 0, 0)

• R3 = (0, 0, 0, 0, 0)

• A1 = (1, 0, 0, 1, 0)

• A2 = (0, 2, 1, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 0, 0, 0)

This system is not in deadlock. It is possible that the processes will

run to completion in the orderP3, P1, P2.

CS350 Operating Systems Fall 2003

