CS350 Operating Systems Fall 2004

Assignment Three

1 Nachos File Systems

Nachos has two file system implementations. As provided to you, Nachos uses the “stub” file system imple-
mentation, which simply translates Nachos file system calls to Unix file system calls. This is the file system
implementation that you have been using for the first two assignments. Nachos also comes with a very basic
file system implementation that uses the Nachos simulated disk. For Assignment 3, your task is to improve
on this basic implementation.

Your first task will be to switch over from the stub file system implementation (which will no longer be
used) to the basic file system that uses the Nachos disk. To use this file system, you will need to rebuild
Nachos. First do a

make distclean

in your build directory. Then, edit Makefile so that the symbol FILESYS_STUB is no longer defined. Do this
by changing the line

DEFINES = -DFILESYS_STUB -DRDATA -DSIM_FIX

to

DEFINES -DRDATA -DSIM_FIX

(Don’t forget to add in ~-DUSE_TLB if you wish to continue using the TLB as you did for Assignment 2.) Once
this is done, you should rebuild Nachos by running

make depend

followed by make nachos as usual.

The internal file system interface used by the new, basic file system implementation is almost the same
as the interface used by the stub file system. However, they are not exactly the same. For example,
FileSystem: :Create takes one parameter in the stub file system interface, and two parameters in the new
basic file system interface. You will need to study the header files in the filesys directory to identify the
other differences in the interface. Because of these differences, you may need to make a few changes to your
existing file-related system call (e.g., Create, Open) implementations to get Nachos to compile with the new
file system.

Once Nachos is no longer using its stub file system, you will also notice that the behavior of the system
will change. For example, you will no longer be able to simply run:

nachos -x ../test/halt

Why? Because Nachos is now looking for the halt executable file in the Nachos file system. The halt file
is not there; it is in the Unix file system.

To run the halt program (or any other program), you will first need to load the program into the Nachos
file system. Then you will be able to run it. For example, you might run:

nachos -f -cp ../test/halt halt -x halt

This command will format the Nachos disk and initialize an empty file system on it (the -f flag), copy the
halt program from the Unix file system into the Nachos file system (the -cp flag), and then execute the
halt program from the Nachos file system. The -cp flag, of course, is somewhat unrealistic since it allows
you to load files into the Nachos file system from “outside”. However, since you create Nachos NOFF files
on Unix machines, such a facility is necessary if you are to run those files on Nachos.



You may want to load a number of programs or files into the Nachos file system over and over again
(e.g.,when recompiling your test programs). To do this, it is convenient to put the relevant Nachos commands
into a script that can be executed with one command. Probably the simplest way is to put the commands into
a text file called reload (one Nachos command per line) and run the script with the command “sh reload”.

There are a number of other file system-related utilities you can run from the Nachos command line. For
example, there are utilities that will allow you to display the contents of a Nachos file, to delete Nachos files,
and to list the contents of the Nachos directory. See the file threads/main.cc for a complete list of the
available Nachos command line parameters.

Note that you must format the Nachos disk before you can store any files on it for the first time. Failure
to do so will result in errors. Formatting the disk erases anything previously stored on the disk and creates
a new, empty file system.

2 The Basic File System

Once you have switched from the stub file system to the basic Nachos file system implementation, your next
task should be to read and understand the basic implementation. It will be your starting point.
The files to focus on in the filesys directory are:

filesys.h, filesys.cc — top-level interface to the file system.

directory.h, directory.cc — translates file names to disk file headers; the directory data structure is
stored as a file.

filehdr.h, filehdr.cc — manages the data structure representing the layout of a file’s data on disk. This
is the Nachos equivalent of a Unix i-node.

openfile.h, openfile.cc — translates file reads and writes to disk sector reads and writes.

synchdisk.h, synchdisk.cc — provides synchronous access to the asynchronous physical disk, so that
threads block until their requests have completed.

The Nachos file system has a UNIX-like interface, so you may also wish to read the UNIX man pages
for creat, open, close, read, write, Iseek, and unlink (e.g., type “man -s 2 creat”). The Nachos file system
has calls that are similar (but not identical) to these; the file system translates these calls into physical disk
operations.

Some of the data structures in the Nachos file system are stored both in memory and on disk. To provide
some uniformity, all these data structures have a “FetchFrom” procedure that reads the data off disk and
into memory, and a “WriteBack” procedure that stores the data back to disk. Note that the in memory and
on disk representations do not have to be identical.

You may implement Assignment 3 directly on top of the base NachOS code that you can download
from the course account. Alternatively, you may build on the code that you developed for Assignment 1 or
Assignment 2.

3 File System Design Requirements
The specific requirements for this assignment are as follows:

1. Ensure that the file-related system calls Create, Open, Close, Read and Write work properly with the
basic file system. These calls are already implemented. However, as was noted in Section 1, the new,
basic file system’s interface is not quite the same as the interface used by the stub file system. As a
result, you may have to make some small changes to make these system calls work.

Note that it should still be possible to use the Read and Write system calls to perform console I/0.



. Add synchronization to the file system to ensure that Read and Write operations on each file are atomic.
That is, if processes attempt concurrent Read or Write requests on a file, your operating system should
execute the requests one at a time. Similarly, your operating system should ensure that at most one
system call (such as Create or Remove or Open) uses a directory at a time. Your synchronization
mechanism should be general enough that system calls that use distinct files or directories can proceed
concurrently. It should also be general enough so that more than one process can have a file open
simultaneously.

. Implement the Remove (char *filename) system call, which is used to delete files. When a file is
removed, processes that have already opened that file should be able to continue to read and write the
file until they close the file. However, new attempts to open the file after it has been removed should
fail. Once a removed file is no longer open by any process, the filesystem should actually remove the
file, reclaiming all of the disk space used by that file, including space used by its header.

. Implement the Seek system call. Each open file must have its own unique file (seek) position. The
Read and Write system calls modify this position implicitly, while the Seek system call lets a process
explicitly change an open file’s seek position so it can read or write any portion of the file.

. Modify the file system so that it will support files as large as 64 Kbytes. (In the basic file system, each
file is limited to a file size of just under 4 KBytes.) A good design will not be wasteful, e.g., it will
not require a file header to have enough data block pointers to point to 64 KBytes of data if the file is
only 1 Kbyte long. You should have some ideas from class as to how to accomplish this.

. Implement a mechanism to allow files to grow. A file should grow when a process tries to Write beyond
the end of the file. The file should grow enough to accommodate the Write operation that causes the
growth. Of course, a file should not be allowed to grow larger than the maximum file size supported
by the system, or beyond the available capacity of the disk.

Note that the Read call should not cause a file to grow. A Read beyond the current end of the file must
return an end-of-file indication as described in userprog/syscall.h. A Seek beyond the current end
of the file is allowed, and should grow the file appropriately.

. Implement a hierarchical directory structure. In the basic file system, all files live in a single directory;
modify this to allow directories to point to either files or other directories. The basic file system imposes
a limit of 10 entries per directory. It is not necessary for you to relax this restriction.

Your system should create a new directory when it is given a CreateDir system call. For exam-
ple, CreateDir(‘‘foo’’) would create a directory (called “foo”) under the original root directory.
CreateDir(‘‘a/b’’) would create a directory “b” under the directory “a/”, provided that directory
“a/” already exists. (A call to CreateDir should never create more than one directory. All components
of the pathname except the last should already exist, else CreateDir should return an error.) The
same holds for Create used to create a file in a subdirectory.

The RemoveDir system call should be able to remove directories. It is an error to remove a directory
that is not empty.

It is an error to Open a directory file. However, you should ensure that the NachOS filesystem list
(nachos -1) and dump (nachos -D) utilities are able to list or print the entire directory hierarchy.

To keep things simple, you may assume that legal file names have a simple form. FEach filename
consists of one or more pathname components, separated by “/” and optionally terminated by “/”.
Each pathname component consists at least one and no more than nine alphanumeric characters (only).
The following are examples of legal pathnames:

e foo

e foo/zam

e fool6x/GHHHHk

The following are examples of illegal pathnames:



3.1

o/
e flip//flop
e this is an illegal/.*@/../one

Of course, illegal pathnames supplied as system call parameters should not cause your system to crash.
Instead, the call should return an error.

File System Testing Requirements

The testing requirements for assignment three are as follows:

1.

Demonstrate that it is possible to create and remove files from the root directory, and that removal of
open files behaves as required.

. Demonstrate that a process can use (have open) several files at the same time, and that several processes

can use a file simultaneously.
Demonstrate that it is possible to open, read from and write to small files.
Demonstrate that seek can be used to achieve non-sequential reading and writing of files.

Demonstrate that large files (up to the required maximum size) can be created, opened, written to and
read from.

Demonstrate that Write can be used to make files grow.

Demonstrate that a hierarchical directory structure can be constructed using CreateDir, that files can
be created and used in non-root directories, and the non-root files and directories can be removed.

Demonstrate that attempts to exceed file system limits (e.g., number of entries per directory, maximum
file size, file system capacity) do not cause your system to crash.

Your test suite should include other tests that you think are appropriate.



