
CS350 Operating Systems Fall 2006

Assignment 1: Threads, Processes, Synchronization

Due date: 12:00 (noon), Tuesday, October 10, 2006

1 Requirements

This assignment requires that you enhance the Nachos operating system. It helps you get started with
Nachos and covers some basic aspects of operating systems: threads, processes, and synchronization. To
receive full marks for this assignment, you must add the following functionality to Nachos:

1. Implement kernel exception handling for the AddressErrorException. This exception, like all other
exceptions, is defined in code/machine/machine.h. The simulated machine will generate this exception
if a user process performs an unaligned memory reference or a memory reference that falls outside of
the process’ virtual address space. Your kernel should take some reasonable action when this exception
occurs. This includes printing some details about the nature of the exception (e.g., memory location
to be accessed) to the dbgSysCall debug stream.

2. Implement the GetId and GetParentId system calls. The desired behaviour of these and all other
system calls is defined in code/userprog/syscall.h.

3. Implement the SetPriority and GetPriority system calls. SetPriority can be used to set the
scheduling priority of the calling thread. GetPriority can be used to determine the scheduling priority
of the calling thread. There are four possible priority levels: P HIGH, P NORMAL, P LOW, and P VERY LOW

(you will need to add P HIGH to the definitions in code/userprog/syscall.h). Threads initially start
at normal priority, but they can move to another priority level by making a call to SetPriority.

A thread should never run unless there are no runnable threads at a higher priority level. This implies
that if a thread with priority P LOW creates a new thread by calling ThreadFork (cf. Problem 6), then
the new thread (which has priority P NORMAL) will be executed immediately, without returning to the
original thread first.

4. Implement the LockOpen and LockClose system calls. The LockOpen call is used to give a process
access to a named lock. LockOpen takes a single parameter, which is a lock name (a string), and it
returns a LockId. If a lock with the specified name already exists in the system, the LockOpen call
should return a LockId that the calling process can use to refer to that lock. If there is no lock with the
specified name, the system should create a lock with that name and return a LockId that the calling
process can use to refer to the new lock. The idea is that if two (or more) processes call LockOpen with
the same name, the processes will get LockIds that refer to the same lock.

LockClose takes a single LockId as a parameter. A process calls LockClose when it is finished using a
lock. A call to LockClose releases the specified LockId in the calling process (meaning that the process
can no longer acquire the lock). When a process terminates (either voluntarily or involuntarily), any
locks it has opened should be closed.

5. Implement the LockAcquire and LockRelease system calls. The LockAcquire call takes two param-
eters, a LockId and a mode flag, which is either shared mode (S MODE) or exclusive mode (X MODE).
Once a thread has successfully acquired a lock, i.e., once the LockAcquire system call has returned,
the thread is said to hold the lock. It has a shared hold or an exclusive hold, depending on the mode
that was specified when the lock was acquired. Lock acquisition must obey the following rules:

• Any number of threads may concurrently hold a given lock in shared mode.

• If a thread holds a given lock in exclusive mode, no other thread may hold that lock concurrently
in either mode.

1



If a thread attempts to acquire a lock in such a way that these rules would be violated, it should be
blocked (in the call to LockAcquire) until it can acquire the lock without violating the rules. Your
implementation is not required to support lock mode (de)escalation. If a process currently holds a
given lock, it may not re-acquire that lock in a different mode without first releasing the lock. For
example, if a process holds a given lock in shared mode and it wishes to acquire the same lock in
exclusive mode, it must first release the lock and then re-acquire it in the new mode.

The LockRelease call is used to release a thread’s current hold on a lock. This may allow other blocked
threads to acquire the lock. When a thread terminates, either voluntarily or because it is killed by the
kernel, all locks currently held by the thread should be released.

If a process attempts to close a lock (using LockClose) that is currently held by one or more of its
threads in either mode, the system should defer closing the lock until it has been released by the
thread(s) that currently hold(s) the lock. Threads of the same process that are currently trying to
acquire the lock, or that try to acquire the lock after the call to LockClose has occurred, should return
immediately with an error code that indicates that the lock is no longer available to the process.

You are not required to implement deadlock detection or prevention for locks.

6. Implement the ThreadFork, ThreadYield and ThreadExit system calls, so that Nachos will support
multithreaded processes. The ThreadFork call should create a new thread within the same process as
the calling thread. ThreadFork takes two arguments. The first is a pointer to the function that the
new thread should execute. The second is an (integer) argument for that function. The ThreadYield

call should cause the calling thread to yield the processor to another runnable thread, if there is one.
The other runnable thread may be in the same process as the thread that is yielding, or in a different
process. Finally, ThreadExit should cause the calling thread to terminate. If the calling thread is the
only thread in its process, this call should also cause the process itself to terminate, as if by a call to
Exit(0). If the calling thread is not the only thread in its process, the process should not terminate.
See code/test/concurrent.c for an example of a multithreaded Nachos application program that
uses these thread calls.

When implementing ThreadFork, you may assume that the newly created thread will always exit
properly, by calling either Exit or ThreadExit (or by crashing, for instance due to an illegal memory
access), but will never return from the function that is passed to ThreadFork when creating the new
thread.

Since you will not implement virtual memory support as part of this assignment, the combined address
spaces of all running processes will have to fit within the physical memory of the (simulated) machine. As
provided to you, this memory is quite small (16K bytes). You may wish to increase the amount of available
memory so that there will be enough to share among several running processes. You may do this by changing
the NumPhysPages in the file code/machine/machine.h. Note that this is the only aspect of the machine
simulation that you are allowed to change. Please read the comments at the top of machine.h carefully.

Your design and implementation should be such that the operating system is isolated from user processes.
There should be nothing that a user program can do (such as providing bogus parameter values to system
calls) to corrupt the operating system or cause it to crash.

Proper design, testing, implementation and documentation of the first five features described above will
be worth 80 marks out of a possible 100 marks. The remaining 20 marks are for multithreaded processes
(ThreadFork) and their correct behaviour. In order to get full marks for each part, you must provide
complete documentation for both your implementation and your test cases, explaining why you chose the
implementation you did choose, explaining how it works, and explaining how the test cases make sure that
your implementation is correct.

For questions 1-5, there is no distinction between a thread and a process. Each process has exactly one
thread, as ThreadFork has not been implemented yet. For question 6, however, there is a difference, and
killing a process, for instance, is not the same as killing a thread within that process. You should keep this
in mind when designing the data structures you need for solving the earlier questions.

Threads within the same process share a common address space, and each process has exactly one address
space. Thus, when implementing support for multiple threads within the same process, you may think of

2



an address space as a process, treat the address space’s id as a process ID and an AddrSpace object as a
process control block (PCB).

Multithreaded processes are the most difficult part of the assignment. For this reason, it is strongly
recommended that you implement and test everything except multithreaded processes first, and work on
multithreaded processes only if you have time. This will ensure that you are eligible to receive most of the
assignment marks.

2 Getting Started

Your first step should be to read the assignment-related information on the course web page, including the in-
structions on how to install and build Nachos. Next, you should spend some time reading and understanding
those parts of Nachos which are relevant to this assignment, and trying Nachos out.

The code/test directory in the Nachos distributions contains a number of Nachos application (user)
programs. You can use these programs to test Nachos and try it out. You may also wish to build on these
programs to test your Assignment 1 work. Of course, you should also create new test programs of your own
design.

A trivial example of such a user program can be found in the file code/test/halt.c. All that it does
is ask the operating system to shut down the simulated machine. Once you have installed Nachos, built
it, and built the test programs, you can run the halt program on Nachos using the command nachos -x

../test/halt. Run this command in the Nachos build directory. You can use the built-in trace facility of
Nachos to see what happens as the test program gets loaded, is executed, and invokes a system call (Halt).
For example, you might try the command nachos -x ../test/halt -d t. This runs the halt program
with thread-related (t) debugging messages enabled. You will find a complete list of the possible debugging
flags in the file code/lib/debug.h.

The Nachos source code is spread across several directories. For the purposes of this assignment, you will
be particularly concerned with the directories code/userprog and code/threads, especially the former. In
the code/userprog directory you will find (among others) the following files:

addrspace.*: This code will create an address space in which to run a user program, and load the program
code and data from a file into the address space.

syscall.h: Contains the Nachos system call interface - a complete list of the defined system calls and their
prototypes.

exception.cc: The handler for system calls and other exceptions is here.

synchconsole.*: This is a simple, synchronous interface to the console, built on top of the machine’s
asynchronous interface.

proctable.*: This implements the Nachos process tables. Among other things, it tracks parent/child
interprocess relationships and manages process exit status.

In code/threads directory you will find:

main.cc: The Nachos main() is here, as is a complete list of the possible command line arguments to Nachos.

This is the place to start your code walkthrough.

kernel.*: All but two of the Nachos “global” variables are encapsulated in a Kernel object, defined here.

thread.*: The Nachos thread package is here. You probably don’t need to change this code (though you
are allowed to) but you do need to understand how to use threads.

scheduler.*: This implements the ready list. You’ll want to understand this when you are working on
SetPriority.

synch.*: This implements a set of synchronization primitives for Nachos threads: semaphores, locks, and
condition variables (the last two of which can be used to implement monitors). You will want to use
the primitives.

3



synchlist.*: This is essentially a list data structure implemented as a monitor, using the synchronization
primitives from synch.h. It is used several places in system. You are also free to use it. It is also a
good example to follow in case you want to implement any similar, synchronized data structures.

Finally, you will also want to take a look at the machine simulation, which is found in the code/machine.
Remember not to change any parts of the machine simulation, except for NumPhysPages in machine.h. In
this directory, you should focus on the interface (*.h) files. In particular:

machine.h: This is the most important file. Here you will find the constant NumPhysPages, which controls
the amount of memory the simulated machine has. You may increase it if you wish to (see above). You
will find a list of possible exception types defined. These are the exception types that your operating
system must handle. The methods ReadRegister and WriteRegister are how your operating system
examines and changes the simulated machine’s registers. The machine’s memory is defined as an array
of characters (bytes) called mainMemory. Your operating system can examine and change the contents
of memory by reading and writing from this array. See code/userprog/addrspace.cc for an example
of operating system code that does this.

4


