University of Waterloo
Midterm Examination

Spring, 2006

Student Name:

Student ID Number:

Section:

Course Abbreviation and Number

Course Title

Sections

Instructor

CS350
Operating Systems
01 (14:30), 02 (11:30)

A. Aboulnaga

Date of Exam
Exam Returned
Appeal Deadline
Time Period
Duration of Exam

Number of Exam Pages
(including this cover sheet)

Exam Type

Additional Materials Allowed

June 20, 2006
June 22, 2006
July 4, 2006
19:00-21:00

2 hours

16 pages

Closed Book

None

NOTE: KEEP YOUR ANSWERS AS CONCISE AS POSSIBLE.

Question 1: Question 4: Question T7:
(14 marks) (12 marks) (11 marks)
Question 2: Question 5: Question 8:
(11 marks) (12 marks) (17 marks)
Question 3: Question 6:

(10 marks) (13 marks)

Total:

(100 marks)

CS350

1 of 16

Question 1. (14 marks)

a. (2 marks)

What is context switching?

Sample Answer:

Context switching is when the kernel switches the CPU from one process to another. This requires the
kernel to save the state of the currently running process in the PCB.

b. (3 marks)

List three ways in which execution can switch from user space to kernel space (i.e., three ways in which
an OS kernel can get back the CPU from a user proceess).

Sample Answer:

1- System calls, 2- Exceptions, 3- Interrupts

c. (2 marks)

What is the timer interrupt? And how does the OS use it for scheduling?

Sample Answer:

Most computers have hardwre clocks (or timers) that generate periodic interrupts. These interrupts are
known as the timer interrupts. The OS uses the timer interrupt to measure the passage of time and
determine when the quantum of a running process has expired, at which point the process is preempted.
The timer interrupt also ensures that the kernel will get the CPU back from a running process so that it
can make scheduling decisions.

d. (3 marks)

Why is Least Recently Used (LRU) considered to be impractical for use as a replacement policy in virtual
memory systems?

Sample Answer:

Because it requires an LRU list or a per-page last access time stamp to be updated by the MMU with
every memory access. This is prohibitively expensive.

e. (2 marks)

In virtual memory systems, why is replacing a clean page faster than replacing a dirty page?

Sample Answer:

When the OS replaces a dirty page, it has to write this page to the swap disk. A clean page can be
replaced without writing it to the swap disk.

f. (2 marks)

List one factor that favours having larger virtual memory pages and one factor that favours having smaller
pages.

Sample Answer:

Factors favouring large pages: smaller page tables, fewer entries in the TLB needed to cover the same
amount of memory, more efficient I/O to swap pages in.

Factors favouring small pages: reduced internal fragmentation, less likely to page in unnecessary data.

Question 2. (11 marks)

a. (4 marks)

CS350

Processes (or threads) can be in one of three states: Running, Ready, or Blocked. In which state is
the process (or thread) for each of the following four cases?

(i) Waiting for data to be read from a disk.

(ii) Spin-waiting for a lock to be released.

(iii) Having just called wait () on a condition variable in a monitor.

(iv) Having just completed an I/O and waiting to get scheduled again on the CPU.

Sample Answer:

2 of 16

(i) Waiting for data to be read from a disk. Blocked

(ii) Spin-waiting for a lock to be released. Running

(iii) Having just called wait () on a condition variable in a monitor. Blocked

(iv) Having just completed an I/O and waiting to get scheduled again on the CPU. Ready

b. (4 marks)

Consider the following list of actions. Put a check mark in the blank beside those actions that should be
performed by the kernel, and not by user programs. (0.5 marks per action)

e ____reading the value of the program counter (PC).

e ____changing the value of the program counter (PC).

e ____ changing the value of the segment table base register.

e ____changing the value of the stack pointer (SP).

e ____increasing the size of an address space.

e ____creating a memory segment that is shared between multiple processes.

e ____ writing to a memory segment that is shared between multiple processes.
e ____disabling interrupts.

Sample Answer:

e ____reading the value of the program counter (PC).

e ____ changing the value of the program counter (PC).

e XX_ changing the value of the segment table base register.

e ____changing the value of the stack pointer (SP).

e _XX_ increasing the size of an address space.

e XX_ creating a memory segment that is shared between multiple processes.
e ____ writing to a memory segment that is shared between multiple processes.
e XX_ disabling interrupts.

c. (3 marks)

Which of the following is shared between threads of the same process? Put a check mark in the blank
beside the items that are shared. (0.5 marks per item)

e ____integer and floating point registers.
e ____ program counter.

e ____heap memory.

e ____stack memory.

e ____global variables.

e ____open files.

Sample Answer:

e ____integer and floating point registers.
e ____ program counter.

e XX_ heap memory.

e ____stack memory.

e XX_ global variables.

e _XX_ open files.

CS350

3 of 16

Question 3. (10 marks)
Is each of the following statements True or False? Explain your answer.

a. (2 marks)
A multi-threaded program is, in general, non-deterministic. i.e., the program can give different outputs
in different runs on the same input.
Sample Answer:
True. The threads can be scheduled differently by the OS in different runs, depending on factors such as
when I/O completes or when interrupts happen. The threads can, in general, access shared data, and the
different scheduling of thredas will result in different values of the shared data and hence different output.
The different scheduling of the threads can also result in different ordering of program output.

b. (2 marks)
When monitors are used for synchronization in a multi-threaded program, they (the monitors) eliminate
the possibility of threads waiting indefinitely for a synchronization event to occur.
Sample Answer:
False. Monitors simplify the task of writing concurrent programs, but indefinite waiting can still happen.
For example, a thread in a monitor can call wait() on a condition variable, and there may be no thread
that will call signal() on this variable.

c. (2 marks)
It is not possible for thrashing to occur in a system that uses a recency-based page replacement policy
such as LRU.
Sample Answer:
False. Thrashing happens when the multiprogramming level is too high for the available physical memory
and so processes cannot keep their working sets in memory. Thrashing has nothing to do with the
replacement policy.

CS350 40f 16

d. (2 marks)
One way to reduce the likelihood of thrashing is to increase the amount of main memory (RAM) in the
system.
Sample Answer:
True. Increasing the amount of memory allows processes to keep more pages in memory, so the processes
are more likely to have their working sets in memory, so the likelihood of thrashing is reduced.

e. (2 marks)
If every page in memory is accessed (used) between any two page faults, then the Clock replacement
algorithm behaves exatcly like FIFO.
Sample Answer:
True. If every page in memory is used between any two page faults, the use bits of all frames on the “clock
face” will be set by the MMU between replacements. Thus, the “clock hand” will not find a frame whose
use bit is clear until it makes a full cycle around the face of the clock, and comes back to the frame on
which it started. That frame will have a clear use bit because the clock hand will have cleared it when it
started its sweep, so this is the frame that will be replaced. Thus, if the clock hand start at frame 4, it
will make a full sweep of the clock face and come back to replace frame i. Next time, it will replace frame
i+ 1, and so on. So the frames will be replaces in the order 0,1,2, ..., which is FIFO.

CS350 5 of 16

Question 4. (12 marks)

a. (4 marks)
Briefly describe how the operating system gets loaded into memory and starts executing when the machine
is powered up (also known as “booting” the operating system).

Sample Answer:

1. CPU starts executing instructions from a known location in memory when it is powered up.

2. That location is in ROM, and it has a simple program that loads a “bootstrap program” from a fixed
location on disk and starts executing this bootstrap program.

3. The bootstrap program initializing the system (registers, memory, devices), and loads the full oper-
ating system into memory and start executing it.

b. (3 marks)
In class, we discussed three heuristics for memory placement when we are using variable sized memory
allocation: first fit, best fit, and worst fit. Briefly describe the worst fit allocation strategy, and explain
the motivation behind it.
Sample Answer:
The worst fit heuristic specifies that the OS should allocate the largest free memory area or “hole” to
satisfy a memory request. This results in the largest possible leftover hole after satisfying the memory
request. The motivation behind worst fit is that such a large leftover hole would be more useful for
satisfying future memory requests that the smaller leftover holes that we get with first fit or best fit.

CS350 6 of 16

c. (5 marks)

Consider an OS that uses local page replacement (i.e., each process gets its own set of frames independent
of any other process). Assume that this OS uses the Clock page replacement policy. Consider a process
in this OS that has a working set of M pages, and is allocated exactly M frames.

(i) Do you expect the page fault frequency for this process to be high or low? Explain briefly.

(ii) Consider the case when this process incurrs a page fault. On average, how many steps will the “clock
hand” advance to find a victim for replacement (i.e., how many times will the victim pointer be
incremented)? Explain your answer.

Sample Answer:

(i) Low. A process mostly accesses pages from its working set. Since the working set is entirely in memory,
page fault frequency will be low.

(ii) The process incurrs page faults only infrequently. Thus, when a page fault does happen, it is likely
that all the M frames will have their use bits set. The victim pointer will therefore have to go through

all M frames clearing the use bits before it can find a candaidte for replacement. Thus, the clock
hand will advance M times on each page fault.

CS350

7 of 16

Question 5. (12 marks)

a. (4 marks)

Suppose that two long running processes, P; and P, are running in a system. Neither program performs
any system calls that might cause it to block, and there are no other processes in the system. P; has 2
threads and P, has 1 thread.

(i) What percentage of CPU time will P; get if the threads are kernel threads? Explain your answer.
(ii) What percentage of CPU time will P; get if the threads are user threads? Explain your answer.

Sample Answer:

(i) If the threads are kernel threads, they are independently scheduled and each of the three threads will
get a share of the CPU. Thus, the 2 threads of P; will get 2/3 of the CPU time. That is, P; will get
66% of the CPU.

(ii) If the threads are user threads, the threads of each process map to one kernel thread, so each process

will get a share of the CPU. The kernel is unaware that P; has two threads. Thus, P; will get 50%
of the CPU.

b. (3 marks)

When a thread is waiting for an event to occur (e.g., waiting for a lock to be released), describe a situation
in which busy waiting (also known as spin-waiting) can result in better performance than blocking while
waiting. Explain why busy waiting never performs better than blocking while waiting for single-CPU
systems.

Sample Answer:

If the thread will wait for a short amount of time (compared to the time required for a context switch),
then it is better to spin-wait. Blocking while waiting requires two context switches, one to block the
thread and one to unblock it. If a thread ¢; is waiting for an event in a single-CPU system (e.g., waiting
for a lock to be released), then the thread ¢2 that will cause the event to happen (e.g., the thread that will
release the lock) must be scheduled for ¢1’s waiting to end. By spin-waiting, ¢; is preventing ¢2 from being
scheduled, and is therefore prolonging its own wait as well as wasting system resources. In a multi-CPU
system, ¢ would be scheduled on a different CPU.

CS350

8 of 16

c. (5 marks)
Some hardware provides a TestAndSet instruction that is executed atomically, and that can be used to
implement mutual exclusion.
(i) Briefly describe what the TestAndSet instruction does.

(ii) Write a fragment of code or pseudo-code to show how TestAndSet can be used to implement critical
sections. Be sure to indicate which variables in your code or pseudo-code are shared between the
threads and which are local to each thread.

Sample Answer:

(i) The TestAndSet instruction sets the value of a variable and returns the old value. It is executed
atomically.
(i) boolean lock; // Shared, initially false.
while (TestAndSet(&lock, true)){ }
Critical Section
lock = false;

CS350 9 of 16

Question 6. (13 marks)
Consider the following code for inserting into a hash table that will be concurrently used by multiple threads.
Some details of the code are omitted for clarity. The hash table is implemented as an array of N linked lists,
and each node in these linked lists contains an integer hash key, key, and its associated object, obj.

void hashInsert(int key, void *obj) {
int listNum = key % N; // Determine which list the item belongs to.
listInsert(hashArray[listNum], key, obj);

}

void listInsert(node *head, int key, void *obj) {
// Create a new node, nn, that contains key and obj.
nn->next = head;
head = nn;

}

a. (4 marks)
Show a problem that can occur if two threads try to insert items into the hash table simultaneously.
Sample Answer:
A race condition can happen that would lead to one of the insertions being lost.
Thread 1 Thread 2
nn-> next = head;

nn->next = head;
head = nn;

head = nn;

Here, the insertion of Thread 2 was lost.

b. (4 marks)
Add a single lock to the above code to fix the problem. Feel free to annotate the code given above or to
copy it in the space below.

Sample Answer:

Lock 1; // Lock variable shared between threads.

void hashInsert(int key, void *obj) {
int listNum = key % N; // Determine which list the item belongs to.
1.AcquireQ);
listInsert(hashArray[listNum], key, obj);
1.Release();

CS350 10 of 16

c. (2 marks)
What is the biggest performance problem with this single-lock solution?
Sample Answer:
This solution serializes access to hashArray. If multiple threads want to update different lists in hashArray,
they would still have to wait for each other.

d. (3 marks)
Show how you can use more locks to improve the performance of accessing the hash table by allowing
more concurrency.
Sample Answer:
We can have an array of locks, one for each entry in hashArray.

Lock 1[N]; // Array of lock variables shared between threads.

void hashInsert(int key, void *obj) {
int listNum = key % N; // Determine which list the item belongs to.
1[1istNum] .Acquire();
listInsert(hashArray[listNum], key, obj);
1[1istNum] .Release();

CS350 11 of 16

Question 7. (11 marks)
Consider the following information about resources in a system:

There are two classes of allocatable resource labelled R1 and R2.

There are two instances of each resource.

There are four processes labelled P1 through P4.

There are some resource instances already allocated to processes, as follows:

— one instance of R1 held by P2, another held by P3
— one instance of R2 held by P1, another held by P4

Some processes have requested additional resources, as follows:

— P1 wants one instance of R1

— P3 wants one instance of R2

a. (5 marks)
Draw the resource allocation graph for this system. Use the style of diagram from the lecture notes.

Sample Answer:

R

-

-@

®

@

CS350

12 of 16

b. (2 marks)
What is the state (runnable, waiting) of each process? For each process that is waiting, indicate what it
is waiting for.
Sample Answer:
P1 waiting.
P2 runnable.
P3 waiting.
P4 runnable.

c. (4 marks)
Is this system deadlocked? If so, state which processes are involved. If not, give an execution sequence
that eventually ends, showing resource acquisition and release at each step.
Sample Answer:

Not deadlocked (even though a cycle exists in the graph). One possible execution sequence: P2, P1, P4,
P3. and

CS350 13 of 16

Question 8. (17 marks)

a. (4 marks)

Using the page references string shown below, fill in the frames and missing information to show how the
OPT (optimal) page replacement algorithm would operate. Use a dash “~” to fill in blank locations. Note
that when there is more than one page that is a possible victim, always choose the one with the lowest
frame number.

Num | 1|2 3|4 |5 |6 |7 |89 |10]11 12|13 |14 |15
Refs | A|B|C|D|B|E|C|G|D|A|G|D|BJ|E]|C
Frame 1 | A
Frame 2 | —
Frame 3 | —
Frame 4 | —
Fault 7 | X

Sample Answer:

Num | 1 |2 |3 |4 |5 |6 |7 |89 |10|11 12|13 |14 |15

Refs | A|B|C|/D|B|E|C|G|D|A|G|D|BJ|E]|C

Framel | A |A|A|A|A|A|A|A|A|A|A|A|B|B]|C

Frame2 | - |B|B|B|B|E|E|E|E|E | E | E | E | E | E

Frame3 | - | - |C|C|C|C|C|G|G|G|G|G|G|G|G

Frame 4 | — | — bD/D|/D|D|D|D|D|D|D|D|D|D

Faut 7 | X | X | X | X | - | X |- |x|—-| -] —-| - |X]|-1]X

b. (4 marks)

Fill in the frames and missing information below to show how the LRU (least recently used) page re-
placement algorithm would operate. Use a dash “~” to fill in blank locations. Note that when there is

more than one page that is a possible victim, always choose the one with the lowest frame number.

Num | 1|2 3|4 |5|6 |7 |89 |10]|11 12|13 |14 |15
Refs | A|B|C|D|B|E|C|G|D|A|G|D|B|E]|C
Frame 1 | A
Frame 2 | —
Frame 3 | —
Frame 4 | —
Fault 7 | X

Sample Answer:

Num (1|2 (3|4 |5 |6 |7 8|9 1011|1213 |14 |15
Refs | A|B|C|D|B|/E|C|G|D|A|G|D|B|E]|C
Framel |A|A|A|A|A|E|E|E|E|A|A|A|A|E|E
Frame2 | - |B|B|B|B|B|B|B|D|D|D|D|D|D]|D
Frame3 | - | - |C|C|C|C|Cc|C|C|C|C|C|B|B|B
Frame 4 | — | — D|ID|DDIG|IG|G|G|G|G]|G]|C
Fault ? | X [X [X | X | - [X |- |X[|X|[X]| - | - | X | X |X

CS350 14 of 16

c. (4 marks)
Assume that there are 5 pages, A, B, C, D, and E. Fill in the page reference string and complete the rest
of the information in the table below so that LRU is the worst page replacement algorithm (i.e., it results
in the maximum number of page faults). Use a dash “-” to fill in blank locations. Note that when there
is more than one page that is a possible victim, always choose the one with the lowest frame number.

Num

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Refs

B

C

D

E

Frame 1

1
A
A

Frame 2

Frame 3

Frame 4

Fault ?

X

Sample Answer:

Num

—_
—_

Refs

Frame 1

1
A
A

Frame 2

o] || B o

Frame 3

Q| T || Qf w

Frame 4

Fault ?

>

54

>l

> O Q| J| || T =

< O] Q| W & EH| o

| O Q| | ||| | o

| O] @) | || W]~

X Q| | | = Qf oo

X Q||| O|| D] e

| alw|H o = 2

X Q|| = O =

M| | | = O 5| o

= Al als

e diviiel lwlin

lieel el il keI R=

CS350

15 of 16

d. (2 marks)
Describe the pattern of references in the reference string that you came up with in part (c).

Sample Answer:
Repeated sequential scan of a set of pages.

e. (3 marks)
Suggest a replacement policy that would minimize the number of page faults for the pattern of references
that you indentified in part (d). Your replacement policy cannot require advance knowledge of future page
references.
Sample Answer:
Most Recently Used is a good policy in this case. MRU would behave just like OPT here.

CS350 16 of 16

