
 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Virtual Memory

Goals

● to allow virtual address spaces that are larger than the physical
address space (= available main memory);

● to allow more processes to run in parallel.

Methods

● allow pages (or segments) from a virtual address space to be
stored in secondary memory (disk) instead of primary memory
(RAM);

● move pages (or segments) between primary and secondary
memory as needed.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

The Memory Hierarchy

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Large Virtual Address Spaces

One advantage of paging is that a process can allocate memory
without consuming any (or just very little) space in primary memory.
The respective entry in the page table indicates “not in RAM”.

Problem:
For a very large virtual address space, this method still consumes
too much memory.

Example:
232 bytes virtual address space. Page size: 4 KB (212 bytes). Each
page table entry consumes 4 bytes.
⇒ Page table requires 4 * 232 / 212 = 222 bytes (4 MB).
 Needs to be stored in physical memory contiguously.

Possible solution:
Use multi-level page tables.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Two-Level Paging

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Limits of Two-Level Paging

Two-level paging works fine for 32-bit machines (although it requires
an additional memory access in case of a TLB miss).

On 64-bit hardware, however, two-level paging becomes infeasible.

Virtual address space: 64 bits
Page size 4 KB (12 bits)
Level-1 page table: 226 entries (= 229 bytes)
Level-2 page tables: 226 entries (= 229 bytes)

Possible solution:
Three-level paging (in general: N-level paging).

Problem:
Too many memory accesses. High effort to maintain page tables.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Inverted Page Tables

Maintaining per-process page tables requires memory space
proportional to the number of pages in the system.

The number of pages can be much larger than the number of
frames.

Why not implement paging through an inverted page table, mapping
from frame ID to page ID?

Address translation can be realized by scanning the inverted page
table, trying to find the frame that contains the given page.

Is this approach realistic? What is the performance?

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Paging Policies

Paging allows to keep pages on disk temporarily and only load them
into memory when they are used.

Demand paging brings pages into memory just before they are used.

The operating system can use a prefetching strategy; it tries to
guess which pages are used next and loads them into memory
before they are actually accessed.

If a page has to be loaded into memory, and there are no free
frames to load it into, the operating system has to use a
replacement policy to determine which other place to evict from
memory, i.e. to move from RAM to disk.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Paging Mechanism

To support virtual memory, each entry in the page table gets a
valid bit V. Its value indicates whether the page currently is in RAM
or on disk:

V = 1 – valid entry (page in RAM), can be used for translation
V = 0 – invalid entry, MMU raises a page fault exception

The OS handles a page fault exception by

● determining which page caused the exception (in Nachos, the
virtual address is stored in BadVAddrReg);

● loading the page into memory, possibly evicting another page.

After the OS loads the page into memory, the instruction that
caused the page fault can be executed.

What are the implications of allowing unaligned
memory access (e.g., on Intel x86 CPUs)?

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Paging Mechanism

Paging + virtual memory allows us to treat secondary memory
(hard disk) like main memory and use RAM as a cache.

Under this interpretation, special treatment has to be given to pages
that are changed while they are in memory.

Definition:
A page that was changed after being loaded into RAM is called dirty.

A dirty page page is more costly to evict from RAM because the
changed version of the page needs to be written to disk first.

The MMU identifies dirty pages by setting a dirty bit in the page
table and clearing the dirty bit when it writes the page to disk.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Replacement Policies

How does the OS decide which page to replace when it has to load
a page into memory?

Possible heuristics:

● evict the page that has been in memory for the longest time;

● evict the page that has been unused for the longest time;

● evict a page from a low-priority process;

● evict the page that has seen the least number of accesses;

● evict a page that is not dirty.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Optimal Replacement Policy

If the OS has knowledge about future behavior of all processes in
the system, then there is an optimal replacement policy.

The OPT policy:
Replace the page that will not be referenced for the longest time.

Example with 3 frames:

Drawback: Not really realistic; requires knowledge
about the internal structure of each process.

Page reference A B C D A B E A B C D E
Frame 1 A A A A A A A A A C C C
Frame 2 B B B B B B B B B D D
Frame 3 C D D D E E E E E E
Page fault? Yes Yes Yes Yes No No Yes No No Yes Yes No

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

The FIFO Policy

FIFO (first in, first out): Replace the page that has been in memory
for the longest time.

Example with 3 frames:

9 page faults (OPT: 7).

Page reference A B C D A B E A B C D
Frame 1 A A A D D D E E E E E
Frame 2 B B B A A A A A C C
Frame 3 C C C B B B B B D
Page fault? Yes Yes Yes Yes Yes Yes Yes No No Yes Yes

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Replacement Policies – General Considerations

The principle of locality suggests that recent usage of a page should
be considered when making the replacement decision:

● Pages that have been accessed recently are likely to be accessed
again in the near future.

● Pages that are close to frequently accessed pages are likely to be
accessed in the near future.

In addition, pages that have been heavily used might have a higher
chance to be used again than pages that are used infrequently.

Cleanliness might also be worth considering – replacing a dirty page
can sometimes be more costly than replacing a clean page.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Types of Locality

Locality is a property of the page reference string (the sequence in
which pages are accessed).

Temporal locality – Pages that have been used recently are likely
to be used again soon.

Spatial locality – Pages close to other pages that have been used
are likely to be used as well.

Page reference strings usually exhibit strong locality. This is
especially true for explicit (i.e., non-paged) file accesses.

Spatial locality and temporal locality are really two ways to look
at the same phenomenon. Temporal locality is caused by spatial
locality within the same page.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

The LRU Policy

LRU: Evict the least-recently used (i.e., “not accessed for the longest
time”) page.

LRU in practice leads to very good results.

An implementation needs to keep track of the last access to each
page, e.g., by putting a timestamp into each entry in a page table.

Because of this overhead, LRU is seldomly used as a replacement
policy in operating systems.

Page reference A B C D A B E A B C
Frame 1 A A A D D D E E E C
Frame 2 B B B A A A A A A
Frame 3 C C C B B B B B
Page fault? Yes Yes Yes Yes Yes Yes Yes No No Yes

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

The Use Bit

To facilitate the implementation of a replacement policy, a use bit
can be added to each page table entry.

The use bit is set by the MMU whenever a page is accessed.

It can be read and modified by the operating system.

Replacement strategies can base their decision on the values of the
use bits of pages currently in memory.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

The CLOCK Replacement Algorithm

The CLOCK algorithm (a.k.a. Second Chance) selects a page for
eviction based on the value of the use bit.

CLOCK behaves exactly like FIFO, except that it skips pages whose
use bit is set.

When a page is loaded into memory, its use bit is set to 1.

Replacement algorithm:

while (frames[victim].useBit == 1) {
 frames[victim].useBit = 0;
 victim = (victim + 1) % NUMBER_OF_FRAMES;
}
toEvict = victim;
victim = (victim + 1) % NUMBER_OF_FRAMES;

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Enhanced Second-Chance Policy

The CLOCK algorithm can be improved by taking cleanliness into
account.

Classify pages according to use and dirty bits:

● (0,0): not recently used, not dirty;
● (0,1): dirty, but not recently used;
● (1,0): recently used, but not dirty;
● (1,1): recently used and dirty.

Algorithm:

 1. Do one rotation looking for a (0,0) page. Do not clear use bits.
 2. If no victim found, do a second (or third) rotation, looking for
 (0,0) and (0,1) pages. Clear use bits while scanning the list.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Frequency-Based Replacement: LFU

LFU (least-frequently used): Replace the page with the smallest
number of references.

In order to implement LFU, the MMU must support it by increasing
the reference counter for a page whenever it is accessed.

Potential drawbacks of frequency-based policies:

● A page might exhibit a single burst, experiencing many accesses
in a very short period of time, that is a bad basis for predicting
the next access to the page.

● Recently loaded pages have small reference count and are likely
to be evicted. This contradicts the locality assumption.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Page Cleaning

A dirty page must be cleaned before it can be evicted from
primary memory.

Cleaning means copying the modified page to secondary memory.

Page cleaning can be either synchronous or asynchronous:

Synchronous cleaning – The victim page is written to disk just
before the new page is loaded into memory. Happens inside the
page fault exception handler.

Asynchronous cleaning – The victim page is written to disk before
a page fault occurs. Can be done concurrently with other
computations. Page faults can be handled more efficiently.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Prefetching

Prefetching refers to the process of loading pages into primary
memory before a page fault occurs, by anticipating access patterns.

Prefetching can hide disk latency (just as asynchronous page
cleaning).

Potential drawback: If the prefetching algorithm guesses wrong, it
replaces a page that might be accessed in the near future.

Most common form: Sequential prefetching. If a process accesses
page N, also load page N+1 (and N+2, ..., N+k) into main memory.

Prefetching is a very effective strategy for dealing with file accesses,
as most processes happen to access files in a sequential fashion

(spatial locality).

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Belady's Anomaly

Repeating the FIFO example from a few slides ago, but with
4 frames instead of 3:

The number of page faults increases from 9 to 10.

When FIFO is used as a replacement policy, increasing the number
of frames does not necessarily decrease the number of page faults.

Page reference A B C D A B E A B C D E
Frame 1 A A A A A A E E E E D D
Frame 2 B B B B B B A A A A E
Frame 3 C C C C C C B B B B
Frame 4 D D D D D D C C C
Page fault? Yes Yes Yes Yes No No Yes Yes Yes Yes Yes Yes

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Stack Policies

Which replacement algorithms are affected by Belady's anomaly?

Let B(m, t) denote the set of pages in a memory of size m at time t.

A replacement policy is called a stack policy if, for all reference
strings, for all m, and for all t:

B(m, t) ⊆ B(m+1, t)

If a replacement algorithm imposes a total order on all pages,
independent of the size of the memory, and always evicts the
smallest page according to that order, then it is a stack policy.

LRU is a stack policy. FIFO and CLOCK are not.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Global vs. Local Page Replacement

A page replacement policy can be either local or global.

● A global replacement strategy is applied to all in-memory pages,
regardless of the process they belong to. A page from process X
may be replaced by a page from process Y.

● A local replacement strategy looks at each processes individually.
A page from process X can only be replaced by a page from the
same process.

● In order for a local replacement policy to work, a separate
memory allocation policy first has to decide how much memory
to allocate to a given process.

What are the advantages/disadvantages of either policy type?

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Memory Allocation Strategies

How much memory does a process need?

● The working set model assumes that at any given time some
portion of a program's address space is heavily used, while the
rest is not. The heavily used portion of its address space if called
the working set of the process.

● The working set of a process may change over time.
● The resident set of a process is the set of pages that are located

in primary memory (assigned a frame).
● The working set model says: If a process' resident set includes its

working set, it will rarely page fault.

Warning
The above statements have close to zero information content!

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Memory Allocation Strategies

Getting more specific:

● Let WSP(t,) denote the set of pages accessed by process P
during the time interval (t – , t). WSP(t,) is P's working set at
time t.

● Let |WSP(t,)| denote the size of WSP(t,), i.e., the number of
distinct pages P's working set at time t.

● If the operating system could keep track of WSP(t,) for each P,
it could:
● Use |WSP(t,)| to determine the number of frames to allocate

to P at time t;
● Use WSP(t,) directly to realize a working-set-based page

replacement policy (evict all pages not in the working set).

(Always keep in mind: Temporal locality!)

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Page Fault Frequency

A different way to implement per-process memory allocation:

● Measure the page fault frequency of each process (number of
page faults per time unit).

● Processes with lots of page faults need more primary memory.

● Processes with few page faults might be OK with a little less
primary memory.

● The working set model suggests that a page fault frequency plot
(page fault frequency vs. number of frames allocated for the
process) should have a sharp knee.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Page Fault Frequency

A page fault frequency plot:

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Thrashing and Load Control

A system that is spending too much time transferring pages
between primary and secondary memory is said to be thrashing.

Thrashing happens when too many processes are competing for
the primary memory in a computer system.

Thrashing can be cured by load shedding:

● killing processes;

● swapping out and suspending processes.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

E – Virtual Memory

Swapping Out Processes

Swapping out a process means removing all its pages from primary
memory.

When a process gets swapped out, it makes sense to suspend it
(to avoid loading it back into main memory immediately). A suspen-
ded process is marked as not runnable.

Obvious benefit: Be able to use more memory for other processes.

Which processes should be swapped out?
● low priority processes;
● blocked processes (are suspended anyway);
● large processes (to free lots of primary memory);
● small processes (because easy to reload later on);
● nobody really has an answer to this... (⇒ simply do this as part of

the general page replacement policy).

