The Kernel and System Calls

The Operating System and the Kernel

e \We will use the following terminology:

kernel: The operating system kernel is the part of the operatingesy$#ihat
responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and
may include other related programs that provide serviceagplications.
This may include things like:
— utility programs
— command interpreters
— programming libraries

CS350 Operating Systems Fall 2007

The Kernel and System Calls 2

The OS Kernel

e Usually kernel code runs in a privileged execution mode Jene rest of the
operating system does not.

e The kernel is a program. It has code and data like any othgrano.

e For now, think of the kernel as a program that resides in its address space,
separate from the address spaces of processes that amegronrthe system.
Later, we will elaborate on the relationship between the&ks address space
and process address spaces.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 3

MIPS Address Spaces and Protection

e On OS/161: User programs live in kuseg, kernel code and tlatetgres live
In ksegO, devices are accessed through ksegl, and ksegAiisaab

Ox ffff ffff

tlb mapped | kseg2
Ox c000 0000

unmapped

Ox 2000 0000 = uncached | XS€91
unmapped ksegO

Ox 8000 0000 cached Kernel Space

Ox 7fff ffff ‘User Space
tlb mapped
cached kuseg

Ox 0000 0000

CS350 Operating Systems Fall 2007

The Kernel and System Calls 4

Kernel Privilege, Kernel Protection

e What does it mean to run in privileged mode?

e Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

e privileges vary from platform to platform, but may include:
— ability to execute special instructions (likel t)
— ability to manipulate processor state (like execution mode
— ability to access virtual addresses that can’t be acceskedwse
e kernel ensures that it isolated from processes. NoO process can execute or

change kernel code, or read or write kernel data, excepudgwoontrolled
mechanisms like system calls.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 5

System Calls

e System calls are the interface between processes and tied.ker
e A process uses system calls to request operating systeroeserv

e From point of view of the process, these services are use@hymlate the
abstractions that are part of its execution environmentekample, a process
might use a system call to

— open afile
— send a message over a pipe
— create another process

— Increase the size of its address space

CS350 Operating Systems Fall 2007

The Kernel and System Calls 6

How System Calls Work

e The hardware provides a mechanism that a running programsgEto cause

a system call. Often, it is a special instruction, e.g., tHe8kyscal |
Instruction.

e What happens on a system call:
— the processor is switched to system (privileged) executiode

— key parts of the current thread context, like the programmtenuand the
stack pointer, are saved

— the thread context is changed so that:
x the program counter is set to a fixed (determined by the hasjwa

memory address, which is within the kernel’'s address space
x the stack pointer is pointed at a stack in the kernel's agdpace

CS350 Operating Systems Fall 2007

The Kernel and System Calls 7

System Call Execution and Return

e Once a system call occurs, the calling thread will be exaguisystem call
handler, which is part of the kernel, in system mode.

e The kernel’s handler determines which service the callmogg@ss wanted, and
performs that service.
e When the kernel is finished, it returns from the system cdlls Theans:

— restore the key parts of the thread context that were saved Wie system
call was made

— switch the processor back to unprivileged (user) executiode

e Now the thread is executing the calling process’ progranmagaecking up
where it left off when it made the system call.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 8

System Call Diagram

Process Kernel
| time
| system call
< O
thread |
execution !
path !
system call return |
T L
|
|
|
|
|
\J
\j

CS350 Operating Systems Fall 2007

The Kernel and System Calls 9

How a System Call Works

e Review: MIPS Register Usage

See al so:. kern/arch/ m ps/include/asndefs. h
RO =
Rl =
R2 =
R3 =
R4 =
RS =
R6 =
R7 =

CS350 Operating Systems Fall 2007

The Kernel and System Calls 10

How a System Call Works

e Review: MIPS Register Usage

RO8- R15 =
R24- R25 =

R16- R23 =

R26-27 =
R28 .

R29 .
R30 .
R31 .

CS350 Operating Systems Fall 2007

The Kernel and System Calls

11

004000b0

4000Db0:
4000Db4:
4000Db8:
40000Dbc:
4000cO0:
4000c4:
4000c8:
4000cc:

How a System Call Works: User Code

<__Sstart>:

3¢c1c1000
279c7ff0
3cO8ffff
3508fff8
03a8e824
27bdfff 0O
3¢011000
ac250004

| ui gp, 0x1000
addi u gp, gp, 32752
lui tO, Oxffff

ori t0,t0,0xfff8
and sp,sp,to0
addi u sp, sp, -16

| ui at, 0x1000

sw al, 4(at)

CS350

Operating Systems

Fall 2007

The Kernel and System Calls

12

4000d0:
4000d4:
4000d8:
4000dc:
4000e0:
4000e4.
4000e8:
4000ec:
4000f O:
4000f 4:
4000f 8:
4000f c:

How a System Call Works: User Code

0c100040
00000000
00408021
0c100050
02002021
0c100069
02002021
02002021
24020000
0000000c
0810003b
00000000

jal 400100 <mai n>

nop

nmove sO,vO
jal 400140 <exit>
nove a0, sO
jal 4001lad4 < exit>
nove a0, sO
nove a0, sO

1 v0,0
syscal |

Cal |

j 4000ec < start+0x3c>

nop

mai n

CS350

Operating Systems

Fall 2007

The Kernel and System Calls

13

How a System Call Works: User Code

/[See how a function/system call

#i ncl ude <uni std. h>
#1 ncl ude <errno. h>

| nt

mai n()

{

| Nt X;
I nt vy,

X
y

cl ose(999);
errno;

return x;

happens.

* |

CS350

Operating Systems

Fall 2007

The Kernel and System Calls

14

% c¢s350- obj dunp -d syscall

How a System Call Works: User Code

% cat syscal |l . out

00400100 <mai n>:

400100:
400104:
400108:
40010c:
400110:
400114.
400118:
40011c:
400120:
400124:

27bdf f e0
af bf 001c
af be0018
03a0f 021
0c10007b
240403e7
af c20010
3¢c021000
8c420000
00000000

addi u

> syscal |l . out

sp, sp, - 32

ra, 28(sp)

s8, 24(sp)

S8, sp

4001ec <cl ose>
a0, 999

v0, 16(s8)

v0, 0x1000

v0, 0(vO0)

CS350

Operating Systems

Fall 2007

The Kernel and System Calls

15

How a System Call Works: User Code

<mai n> conti nued

400128: af c20014 SwW v0, 20(s8)
40012c: 8f c20010 | w v0, 16(s8)
400130: 03c0e821 nove Sp, s8

400134. 8f bf 001c | w ra, 28(sp)
400138: 8f be0018 | w s8, 24(sp)
40013c: 03e00008 jr ra

400140: 27bd0020 addi u sp, sp, 32

CS350 Operating Systems Fall 2007

The Kernel and System Calls

16

See |lib/libc/syscalls.S for details/coments x/

How a System Call Works: User Code

At bit easier to understand from di sassenbl ed code.

% c¢s350- obj dunp -d syscall > syscall.S
% cat syscall.S

0040022c

<cl ose>:
40022c: 08100074 | 4001d0 < syscall >
400230: 24020007 1i vO,7
00400234 <r eboot >:
400234: 08100074 | 4001d0 < syscall >
400238: 24020008 |1 vO,8
CS350 Operating Systems Fall 2007

The Kernel and System Calls 17

How a System Call Works: User Code

Fromlib/libc/syscalls.S
. set noreorder
.t ext
.type _syscall, @unction
.ent _ syscall

__syscal l:
syscal | [+ make system call =*/
beq a3, $0, 1f [/~ if a3 is zero, call succeeded =/
nop [+ delay slot =/
sw v0, errno /[call failed: store errno x/
1 vl, -1 [+ and force return value to -1 */
1 vO, -1
1:
] ra [* return x/
nop [+ delay slot =/

.end _ syscall
.set reorder

CS350 Operating Systems Fall 2007

The Kernel and System Calls 18

How a System Call Works: User Code

Fromlib/libc/syscalls.S

SYSCALL(cl ose, 7)
SYSCALL(reboot, 8)
SYSCALL(sync, 9)
SYSCALL(sbrk, 10)
SYSCALL(getpid, 11)

CS350 Operating Systems Fall 2007

The Kernel and System Calls 19

How a System Call Works: Kernel Code

syscall instruction generates an exception.

Processor begins execution at virtual address 0x8000 0080
From Kkern/arch/ m ps/ m ps/exception.S

Q where does this address |live?

excepti on:
nmove k1, sp [+ Save previous stack pointer in k1 */
nfcO kO, cO_status [+ Get status register =/
andi kO, kO, CST KUp /* Check the we-were-in-user-node bit =*/

beq kO, $0, 1f [+ If clear, fromkernel, already have stac
nop [+ delay slot =/
[+ Comng fromuser node - |oad kernel stack into sp */
| a kO, curkstack [+ get address of "curkstack" =/
| w sp, 0(kO) [+ get its value */
nop [+ delay slot for the | oad */
1:
nfcO kO, cO _cause [+ Now, |oad the exception cause. =*/
j common_exception [+ Skip to commbn code */
nop [+ delay slot =/

CS350 Operating Systems Fall 2007

The Kernel and System Calls 20

How a System Call Works: Kernel Code

From Kkern/arch/ m ps/ m ps/exception.S

conmon_excepti on:

0 saves the contents of the registers

ocalls mps trap (C code in kern/arch/ mps/ m ps/trap.c)
O restores the contents of the saved registers

orfe (return from exception)

From kern/arch/m ps/mps/trap.c
m ps_trap:
o figures out the exception type/cause
o calls the appropriate handi ng function
(for systemcall this is mps_syscall).

CS350 Operating Systems Fall 2007

The Kernel and System Calls

21

How a System Call Works: Kernel Code

From kern/arch/ m ps/ m ps/syscall.c

m ps_syscal |l (struct trapfrane *tf)

{
assert (curspl ==0);
callno = tf->tf vO; retval = 0;

swtch (callno) {
case SYS reboot:
[+ 1s in kern/main/main.c */
err = sys reboot (tf->tf _ al);
br eak;

[* Add stuff here =*/

def aul t:

kKprintf("Unknown syscall %\ n",

err = ENOSYS;
br eak;

cal I no);

CS350 Operating Systems

Fall 2007

The Kernel and System Calls

22

How a System Call Works: Kernel Code

1f (err) {
tf->tf _vO
tf->tf a3
} else {
/| * Success.
tf->tf _vO
tf->tf a3

[* Advance the PC,

tf->tf _epc +=

/|~ Make sure the syscall
assert (curspl =

err;

1, [+ signal an error =/
* [

retval ;

0; [+ signal no error =/

to avoid the syscall
4,

::O);

agai n.

* |

code didn’t forget to | ower spl

CS350

Operating Systems

Fall 2007

*

The Kernel and System Calls 23

Exceptions

e EXceptions are another way that control is transferred fqmocess to the
kernel.

e EXxceptions are conditions that occur during the executf@amanstruction by
a process. For example:
— arithmetic error, e.g, overflow
— illegal instruction
— memory protection violation

— page fault (to be discussed later)

e exceptions are detected by the hardware

CS350 Operating Systems Fall 2007

The Kernel and System Calls 24

Exceptions (cont’d)

e when an exception occurs, control is transferred (by thdviaare) to a fixed
address in the kernel (0x8000 0080 on MIPS & OS/161)

e transfer of control happens in much the same way as it doesdpstem call.
In fact, a system call can be thought of as a type of excepdiiot they are
sometimes implemented that way (e.g., on the MIPS).

e in the kernel, an exception handler determines which exaeptas occurred
and what to do about it. For example, it may choose to destppeess that
attempts to execute an illegal instruction.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 25

Interrupts

e Interrupts are a third mechanism by which control may besfieamed to the
kernel

e Interrupts are similar to exceptions. However, they aresedly hardware
devices, not by the execution of a program. For example:

— a network interface may generate an interrupt when a netpacket
arrives

— a disk controller may generate an interrupt to indicate itiads finished
writing data to the disk

— atimer may generate an interrupt to indicate that time hasquh
e Interrupt handling is similar to exception handling - cutrexecution context

IS saved, and control is transferred to a kernel interruptiea at a fixed
address.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 26

Summary of Hardware Features Used by the Kernel

Interrupts and Exceptions, such as timer interrupts, give the kernel the
opportunity to regain control from user programs.

Memory management features,such as memory protection, allow the kernel to
protect its address space from user programs.

Privileged execution modeallows the kernel to reserve critical machine
functions (e.g, halt) for its own use.

Independent I/O devicesallow the kernel to schedule other work while 1/0
operations are on-going.

CS350 Operating Systems Fall 2007

