
The Kernel and System Calls 1

The Operating System and the Kernel

• We will use the following terminology:

kernel: The operating system kernel is the part of the operating system that

responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and

may include other related programs that provide services for applications.

This may include things like:

– utility programs

– command interpreters

– programming libraries

CS350 Operating Systems Fall 2007

The Kernel and System Calls 2

The OS Kernel

• Usually kernel code runs in a privileged execution mode, while the rest of the

operating system does not.

• The kernel is a program. It has code and data like any other program.

• For now, think of the kernel as a program that resides in its own address space,

separate from the address spaces of processes that are running on the system.

Later, we will elaborate on the relationship between the kernel’s address space

and process address spaces.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 3

MIPS Address Spaces and Protection

• On OS/161: User programs live in kuseg, kernel code and data structures live
in kseg0, devices are accessed through kseg1, and kseg2 is not used

0x 0000 0000

0x 7fff ffff
0x 8000 0000

0x ffff ffff

Kernel Space

User Space

kuseg

kseg0
0x a000 0000 uncached kseg1

0x c000 0000

kseg2

cached
unmapped

unmapped

tlb mapped

tlb mapped
cached

CS350 Operating Systems Fall 2007

The Kernel and System Calls 4

Kernel Privilege, Kernel Protection

• What does it mean to run in privileged mode?

• Kernel uses privilege to

– control hardware

– protect and isolate itself from processes

• privileges vary from platform to platform, but may include:

– ability to execute special instructions (likehalt)

– ability to manipulate processor state (like execution mode)

– ability to access virtual addresses that can’t be accessed otherwise

• kernel ensures that it isisolated from processes. No process can execute or

change kernel code, or read or write kernel data, except through controlled

mechanisms like system calls.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 5

System Calls

• System calls are the interface between processes and the kernel.

• A process uses system calls to request operating system services.

• From point of view of the process, these services are used to manipulate the

abstractions that are part of its execution environment. For example, a process

might use a system call to

– open a file

– send a message over a pipe

– create another process

– increase the size of its address space

CS350 Operating Systems Fall 2007

The Kernel and System Calls 6

How System Calls Work

• The hardware provides a mechanism that a running program canuse to cause

a system call. Often, it is a special instruction, e.g., the MIPSsyscall

instruction.

• What happens on a system call:

– the processor is switched to system (privileged) executionmode

– key parts of the current thread context, like the program counter and the

stack pointer, are saved

– the thread context is changed so that:

∗ the program counter is set to a fixed (determined by the hardware)

memory address, which is within the kernel’s address space

∗ the stack pointer is pointed at a stack in the kernel’s address space

CS350 Operating Systems Fall 2007

The Kernel and System Calls 7

System Call Execution and Return

• Once a system call occurs, the calling thread will be executing a system call

handler, which is part of the kernel, in system mode.

• The kernel’s handler determines which service the calling process wanted, and

performs that service.

• When the kernel is finished, it returns from the system call. This means:

– restore the key parts of the thread context that were saved when the system

call was made

– switch the processor back to unprivileged (user) executionmode

• Now the thread is executing the calling process’ program again, picking up

where it left off when it made the system call.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 8

System Call Diagram

Process Kernel

time

system call return

system call

thread
execution
path

CS350 Operating Systems Fall 2007

The Kernel and System Calls 9

How a System Call Works

• Review: MIPS Register Usage

See also: kern/arch/mips/include/asmdefs.h

R0 =

R1 =

R2 =

R3 =

R4 =

R5 =

R6 =

R7 =

CS350 Operating Systems Fall 2007

The Kernel and System Calls 10

How a System Call Works

• Review: MIPS Register Usage

R08-R15 =

R24-R25 =

R16-R23 =

R26-27 =

R28 =

R29 =

R30 =

R31 =

CS350 Operating Systems Fall 2007

The Kernel and System Calls 11

How a System Call Works: User Code

004000b0 <__start>:

4000b0: 3c1c1000 lui gp,0x1000

4000b4: 279c7ff0 addiu gp,gp,32752

4000b8: 3c08ffff lui t0,0xffff

4000bc: 3508fff8 ori t0,t0,0xfff8

4000c0: 03a8e824 and sp,sp,t0

4000c4: 27bdfff0 addiu sp,sp,-16

4000c8: 3c011000 lui at,0x1000

4000cc: ac250004 sw a1,4(at)

CS350 Operating Systems Fall 2007

The Kernel and System Calls 12

How a System Call Works: User Code

4000d0: 0c100040 jal 400100 <main> # Call main

4000d4: 00000000 nop

4000d8: 00408021 move s0,v0

4000dc: 0c100050 jal 400140 <exit>

4000e0: 02002021 move a0,s0

4000e4: 0c100069 jal 4001a4 <_exit>

4000e8: 02002021 move a0,s0

4000ec: 02002021 move a0,s0

4000f0: 24020000 li v0,0

4000f4: 0000000c syscall

4000f8: 0810003b j 4000ec <__start+0x3c>

4000fc: 00000000 nop

CS350 Operating Systems Fall 2007

The Kernel and System Calls 13

How a System Call Works: User Code

/* See how a function/system call happens. */

#include <unistd.h>

#include <errno.h>

int

main()

{

int x;

int y;

x = close(999);

y = errno;

return x;

}

CS350 Operating Systems Fall 2007

The Kernel and System Calls 14

How a System Call Works: User Code

% cs350-objdump -d syscall > syscall.out

% cat syscall.out

00400100 <main>:

400100: 27bdffe0 addiu sp,sp,-32

400104: afbf001c sw ra,28(sp)

400108: afbe0018 sw s8,24(sp)

40010c: 03a0f021 move s8,sp

400110: 0c10007b jal 4001ec <close>

400114: 240403e7 li a0,999

400118: afc20010 sw v0,16(s8)

40011c: 3c021000 lui v0,0x1000

400120: 8c420000 lw v0,0(v0)

400124: 00000000 nop

CS350 Operating Systems Fall 2007

The Kernel and System Calls 15

How a System Call Works: User Code

<main> continued

400128: afc20014 sw v0,20(s8)

40012c: 8fc20010 lw v0,16(s8)

400130: 03c0e821 move sp,s8

400134: 8fbf001c lw ra,28(sp)

400138: 8fbe0018 lw s8,24(sp)

40013c: 03e00008 jr ra

400140: 27bd0020 addiu sp,sp,32

CS350 Operating Systems Fall 2007

The Kernel and System Calls 16

How a System Call Works: User Code

See lib/libc/syscalls.S for details/comments */

At bit easier to understand from disassembled code.

% cs350-objdump -d syscall > syscall.S

% cat syscall.S

...

0040022c <close>:

40022c: 08100074 j 4001d0 <__syscall>

400230: 24020007 li v0,7

00400234 <reboot>:

400234: 08100074 j 4001d0 <__syscall>

400238: 24020008 li v0,8

...

CS350 Operating Systems Fall 2007

The Kernel and System Calls 17

How a System Call Works: User Code

From lib/libc/syscalls.S
.set noreorder
.text
.type __syscall,@function
.ent __syscall

__syscall:
syscall /* make system call */
beq a3, $0, 1f /* if a3 is zero, call succeeded */
nop /* delay slot */
sw v0, errno /* call failed: store errno */
li v1, -1 /* and force return value to -1 */
li v0, -1

1:
j ra /* return */
nop /* delay slot */
.end __syscall
.set reorder

CS350 Operating Systems Fall 2007

The Kernel and System Calls 18

How a System Call Works: User Code

From lib/libc/syscalls.S

SYSCALL(close, 7)

SYSCALL(reboot, 8)

SYSCALL(sync, 9)

SYSCALL(sbrk, 10)

SYSCALL(getpid, 11)

CS350 Operating Systems Fall 2007

The Kernel and System Calls 19

How a System Call Works: Kernel Code

syscall instruction generates an exception.
Processor begins execution at virtual address 0x8000 0080
From: kern/arch/mips/mips/exception.S
Q: where does this address live?

exception:
move k1, sp /* Save previous stack pointer in k1 */
mfc0 k0, c0_status /* Get status register */
andi k0, k0, CST_KUp /* Check the we-were-in-user-mode bit */
beq k0, $0, 1f /* If clear, from kernel, already have stack
nop /* delay slot */

/* Coming from user mode - load kernel stack into sp */
la k0, curkstack /* get address of "curkstack" */
lw sp, 0(k0) /* get its value */
nop /* delay slot for the load */

1:
mfc0 k0, c0_cause /* Now, load the exception cause. */
j common_exception /* Skip to common code */
nop /* delay slot */

CS350 Operating Systems Fall 2007

The Kernel and System Calls 20

How a System Call Works: Kernel Code

From: kern/arch/mips/mips/exception.S

common_exception:

o saves the contents of the registers

o calls mips_trap (C code in kern/arch/mips/mips/trap.c)

o restores the contents of the saved registers

o rfe (return from exception)

From: kern/arch/mips/mips/trap.c

mips_trap:

o figures out the exception type/cause

o calls the appropriate handing function

(for system call this is mips_syscall).

CS350 Operating Systems Fall 2007

The Kernel and System Calls 21

How a System Call Works: Kernel Code

From: kern/arch/mips/mips/syscall.c

mips_syscall(struct trapframe *tf)
{

assert(curspl==0);
callno = tf->tf_v0; retval = 0;

switch (callno) {
case SYS_reboot:

/* is in kern/main/main.c */
err = sys_reboot(tf->tf_a0);
break;

/* Add stuff here */

default:
kprintf("Unknown syscall %d\n", callno);
err = ENOSYS;
break;

}

CS350 Operating Systems Fall 2007

The Kernel and System Calls 22

How a System Call Works: Kernel Code

if (err) {
tf->tf_v0 = err;
tf->tf_a3 = 1; /* signal an error */

} else {
/* Success. */
tf->tf_v0 = retval;
tf->tf_a3 = 0; /* signal no error */

}

/* Advance the PC, to avoid the syscall again. */
tf->tf_epc += 4;

/* Make sure the syscall code didn’t forget to lower spl *
assert(curspl==0);

}

CS350 Operating Systems Fall 2007

The Kernel and System Calls 23

Exceptions

• Exceptions are another way that control is transferred froma process to the

kernel.

• Exceptions are conditions that occur during the execution of an instruction by

a process. For example:

– arithmetic error, e.g, overflow

– illegal instruction

– memory protection violation

– page fault (to be discussed later)

• exceptions are detected by the hardware

CS350 Operating Systems Fall 2007

The Kernel and System Calls 24

Exceptions (cont’d)

• when an exception occurs, control is transferred (by the hardware) to a fixed

address in the kernel (0x8000 0080 on MIPS & OS/161)

• transfer of control happens in much the same way as it does fora system call.

In fact, a system call can be thought of as a type of exception,and they are

sometimes implemented that way (e.g., on the MIPS).

• in the kernel, an exception handler determines which exception has occurred

and what to do about it. For example, it may choose to destroy aprocess that

attempts to execute an illegal instruction.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 25

Interrupts

• Interrupts are a third mechanism by which control may be transferred to the

kernel

• Interrupts are similar to exceptions. However, they are caused by hardware

devices, not by the execution of a program. For example:

– a network interface may generate an interrupt when a networkpacket

arrives

– a disk controller may generate an interrupt to indicate thatit has finished

writing data to the disk

– a timer may generate an interrupt to indicate that time has passed

• Interrupt handling is similar to exception handling - current execution context

is saved, and control is transferred to a kernel interrupt handler at a fixed

address.

CS350 Operating Systems Fall 2007

The Kernel and System Calls 26

Summary of Hardware Features Used by the Kernel

Interrupts and Exceptions, such as timer interrupts, give the kernel the

opportunity to regain control from user programs.

Memory management features,such as memory protection, allow the kernel to

protect its address space from user programs.

Privileged execution modeallows the kernel to reserve critical machine

functions (e.g, halt) for its own use.

Independent I/O devicesallow the kernel to schedule other work while I/O

operations are on-going.

CS350 Operating Systems Fall 2007

