Interprocess Communication

Interprocess Communication Mechanisms

e shared storage

— These mechanisms have already been covered. examples:
« shared virtual memory

* shared files

— processes must agree on a name (e.g., a file name, or a shawed vi
memory key) in order to establish communication

e message based

— signals

sockets

— pipes
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Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:

e simplex (one-way)

e duplex (two-way)

¢ half-duplex (two-way, but only one way at a time)
Message Boundaries:

datagram model: message boundaries

stream model: no boundaries
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Properties of Message Passing Mechanisms (cont'd)

Connections: need to connect before communicating?

e in connection-oriented models, recipient is specifiedraétof connection,
not by individual send operations. All messages sent ovenaection
have the same recipient.

¢ in connectionless models, recipient is specified as a pdearteeeach send
operation.
Reliability:
e can messages get lost?
e can messages get reordered?

e can messages get damaged?
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Sockets

e asocket is a communicatiamd-point
e if two processes are to communicate, each process musg deatvn socket

e two common types of sockets

stream sockets: support connection-oriented, reliable, duplex
communication under the stream model (no message bouggarie

datagram sockets: support connectionless, best-effort (unreliable), duple
communication under the datagram model (message bousparie
e both types of sockets also support a variety of address dmneaig.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols

CS350 Operating Systems Fall 2010

Interprocess Communication 6

Using Datagram Sockets (Receiver)

s = socket (addressType, SOCK DGRAM ;
bi nd(s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

m._.ommA s);

socket creates a socket

bi nd assigns an address to the socket

r ecvf r omreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

bothbuf andsour ceAddr ess are filled by the ecvf r omcall
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Using Datagram Sockets (Sender)

s = socket (addressType, SOCK DGRAM ;
sendt o( s, buf, negLengt h, t ar get Addr ess)

.o._.ommA S);

e socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent
— nsglLengt h indicates the length of the message in the buffer

— tar get Addr ess is the address of the socket to which the message is to
be delivered
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More on Datagram Sockets

e sendt o andr ecvf r omcallsmay block
— recvf r omblocks if there are no messages to be received from the
specified socket
— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliabl
— messages (datagrams) may be lost
— messages may be reordered

e The sending process must know the address of the receivegg'ssocket.
How does it know this?
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A Socket Address Convention

Servi ce Por t Descri ption

echo 7/ udp

syst at 11/tcp

net st at 15/tcp

char gen 19/ udp

ftp 21/ tcp

ssh 22/ tcp # SSH Renote Logi n Protocol

t el net 23/tcp

sntp 25/ tcp

tinme 37/ udp

gopher 70/ tcp # Internet CGopher

finger 79/ tcp

VWY 80/tcp # Wor | dW deWeb HTTP

pop2 109/tcp # POP version 2

i map2 143/t cp # | MAP
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Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM;
bi nd(s, addr ess) ;

i sten(s, backl og);

ns = accept (s, sourceAddr ess);
recv(ns, buf, buf Lengt h) ;

send( ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don't accept nore connections

| i st en specifies the number of connection requests for this sobkéfntill
be queued by the kernel

accept accepts a connection request and creates a new socKet (

r ecv receives up teouf Lengt h bytes of data from the connection

send sendsuf Lengt h bytes of data over the connection.
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Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockeatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of
the socket that has made the connection request

¢ additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)
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Using Stream Sockets (Active Process)

s = socket (addressType, SOCK STREAM ;
connect (s, target Addr ess) ;

send( s, buf, buf Lengt h) ;

recv(s, buf, buf Lengt h) ;

.o._.ommA S);

e connect sends a connection request to the socket with the specifirdsxl

— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the $@ukangbi nd)
before connecting. This is the address that will be retutnetheaccept
call in the passive process

e if the active process does not choose an address, the systethomse one
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lllustration of Stream Socket Connections

m queue of connection request:

s [TTTH s
s2
s3
socket
process 1 process 2
(active) (passive)
process 3
(active)
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Pipes

e pipes are communication objects (not end-points)
e pipes use the stream model and are connection-orientecthable
e some pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits tne to
communication betweerelated processes, typically a child process and its
parent

e api pe() system call creates a pipe and returns two descriptors,arreath
end of the pipe
— for a simplex pipe, one descriptor is for reading, the otedoi writing

— for a duplex pipe, both descriptors can be used for readidgnaiting
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One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char n[] = "nessage for parent”;

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

if (pid ==10) {
/1 child executes this
close(fd[0]); // close read end of pipe
wite(fd[ 1], m 19);

} else {
/'l parent executes this
close(fd[1]); // close wite end of pipe
read(fd[0],y, 100);
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lllustration of Example (after pi pe())

parent process
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lllustration of Example (after f ork())
parent process child proce:
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lllustration of Example (after cl ose())

parent process

child proces
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Examples of Other Interprocess Communication Mechanisms

named pipe:
e similar to pipes, but with an associated name (usually a &lee)
e name allows arbitrary processes to communicate by opehegame
named pipe
e must be explicitly deleted, unlike an unnamed pipe
message queue:
¢ like a named pipe, except that there are message boundaries

e nsgsend call sends a message into the quetssgr ecv call receives the
next message from the queue
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Signals

signals permit asynchronous one-way communication
— from a process to another process, or to a group of procesadke kernel

— from the kernel to a process, or to a group of processes

there are many types of signals

the arrival of a signal may cause the execution afgaal handler in the
receiving process

there may be a different handler for each type of signal
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Examples of Signal Types

Si gnal Val ue Acti on Coment
SI G NT 2 Term Interrupt from keyboard
SIALL 4 Core Il1legal Instruction
SI &I LL 9 Term Kill signal
SIGCHLD 20, 17, 18 I gn Child stopped or term nated
SI GBBUS 10,7, 10 Core Bus error

SI GXCPU 24, 24, 30 Core CPUtinme limt exceeded
SI GSTOP 17,19, 23 St op Stop process
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Signal Handling

operating system determines default signal handling foln @&w process

example default actions:
— ignore (do nothing)
— Kkill (terminate the process)

— stop (block the process)

a running process can change the default for some typesradlsig

signal-related system calls
— calls to set non-default signal handlers, e.g., Wsiignal , si gacti on

— calls to send signals, e.g., Unx | |
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Implementing IPC

e application processes use descriptors (identifiers) dealby the kernel to
refer to specific sockets and pipes, as well as files and oti)ects

e kerneldescriptor tables (or other similar mechanism) are used to associate
descriptors with kernel data structures that implementdBjécts

e kernel provides bounded buffer space for data that has legmusing an IPC
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a perembjbasis

— IPC end points, like sockets, buffering is associated waitheendpoint
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Network Interprocess Communication

e some sockets can be used to connect processes that aregranrdifferent
machines

e the kernel:
— controls access to network interfaces

— multiplexes socket connections across the network
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Networking Reference Models

e |ISO/OSI Reference

Model
7 | Application Layer | ™M
B layer N+1 protocol
6 | Presentation Layer LayerNF oo oo - teverh
m mmwm_OJ _Im.V\mq. layer N service
layer N protocol
4 | Transport Layer Layer N [==-o-ommomomom oo 7| Lavern
3 Network Layer H H
2 | Data Link Layer e e
“_. n_\dv\m_ow_ _Im.<m—. layer 1 protocol
Layer 1 Layer 1
¢ Internet Model
— layers 1-4 and 7
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Internet Protocol (IP): Layer 3

e every machine has one (or more) IP address, in addition tateslink layer
address(es)

e In IPv4, addresses are 32 bits, and are commonly writtergusiot” notation,
e.g.:
— cpu06.student.cs 129.97.152.106
— www.google.ca= 216.239.37.99 or 216.239.51.104 or ...

¢ IP moves packets (datagrams) from one machine to anothérimeac

¢ principal function of IP igouting: determining the network path that a packet
should take to reach its destination

¢ |IP packet delivery is “best effort” (unreliable)
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IP Routing Table Example

e Routing table for zonker.uwaterloo.ca, which is on threvoeks, and has IP
addresses 129.97.74.66, 172.16.162.1, and 192.168 (bfte per network):

Destination Gateway | Interface

172.16.162.* - vmnetl
129.97.74.* - ethO
192.168.148.* - vmnet8

default 129.97.74.1) ethO

e routing table key:
destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is ditlgc
reachable)

interface: which network interface to use to send this packet
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Internet Transport Protocols

TCP: transport control protocol

e connection-oriented

e reliable

e Stream

e congestion control

e used to implement INET domain stream sockets
UDP: user datagram protocol

e connectionless

unreliable

datagram

no congestion control

used to implement INET domain datagram sockets
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TCP and UDP Ports

e since there can be many TCP or UDP communications end psint&éts) on
a single machine, there must be a way to distinguish amomg the

e each TCP or UDP address can be thought of as having two parts:
(machine name, port number)

e The machine name is the IP address of a machine, and the pobemserves
to distinguish among the end points on that machine.

e INET domain socket addresses are TCP or UDP addresses (lilegpem
whether the socket is a stream socket or a datagram socket).
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Example of Network Layers

Application Application
Process Process
Transport Transport
- — — = =~ m— — e — e — o — o —— i ——— >
Instance Instance
Network Network _; Network
Instance Instance 7 Instance Instance
Datg Link Data Link Data Link Datg Link
Instance Instance Instance Instance

]

gateways
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Network Packets (UDP Example)

application message

UDP payload
-

UDP header application message

IP payload
-z pay S

IP Header | UDP headerny application message

Data Link Payload

Data Link Header | IP Header | UDP header| application message
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BSD Unix Networking Layers

process

system calls

socket layer

M socket queues

protocol layer A
0
]

/ i
interface
queues M M M (IP) protocol queue

interface layer
(ethernet,PPP,loopback,...)

network network network
device device device
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