Interprocess Communication

Interprocess Communication Mechanisms

e shared storage

— These mechanisms have already been covered. examples:
« shared virtual memory

* shared files

— processes must agree on a name (e.g., a file name, or a shawed vi
memory key) in order to establish communication

e message based

— signals

sockets

— pipes

CS350

Operating Systems

Fall 2010

Interprocess Communication

sender

Message Passing

Indirect Message Passing

ﬁ operating m<mﬁm3¥

D

send

sender

= receiver

oo

ﬁ operating m<m83¥

receive

> receiver

send

_®

Direct Message Passing

receive

If message passing is indirect, the message passing systsim m
have some capacity to buffer (store) messages.

CS350

Operating Systems

Fall 2010

Interprocess Communication 3

Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:

e simplex (one-way)

e duplex (two-way)

¢ half-duplex (two-way, but only one way at a time)
Message Boundaries:

datagram model: message boundaries

stream model: no boundaries

CS350 Operating Systems Fall 2010

Interprocess Communication 4

Properties of Message Passing Mechanisms (cont'd)

Connections: need to connect before communicating?

e in connection-oriented models, recipient is specifiedraétof connection,
not by individual send operations. All messages sent ovenaection
have the same recipient.

¢ in connectionless models, recipient is specified as a pdearteeeach send
operation.
Reliability:
e can messages get lost?
e can messages get reordered?

e can messages get damaged?

CS350 Operating Systems Fall 2010

Interprocess Communication 5

Sockets

e asocket is a communicatiamd-point
e if two processes are to communicate, each process musg deatvn socket

e two common types of sockets

stream sockets: support connection-oriented, reliable, duplex
communication under the stream model (no message bouggarie

datagram sockets: support connectionless, best-effort (unreliable), duple
communication under the datagram model (message bousparie
e both types of sockets also support a variety of address dmneaig.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols

CS350 Operating Systems Fall 2010

Interprocess Communication 6

Using Datagram Sockets (Receiver)

s = socket (addressType, SOCK DGRAM ;
bi nd(s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

m._.ommA s);

socket creates a socket

bi nd assigns an address to the socket

r ecvf r omreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

bothbuf andsour ceAddr ess are filled by the ecvf r omcall

CS350 Operating Systems Fall 2010

Interprocess Communication 7

Using Datagram Sockets (Sender)

s = socket (addressType, SOCK DGRAM ;
sendt o(s, buf, negLengt h, t ar get Addr ess)

.o._.ommA S);

e socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent
— nsglLengt h indicates the length of the message in the buffer

— tar get Addr ess is the address of the socket to which the message is to
be delivered

CS350 Operating Systems Fall 2010

Interprocess Communication 8

More on Datagram Sockets

e sendt o andr ecvf r omcallsmay block
— recvf r omblocks if there are no messages to be received from the
specified socket
— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliabl
— messages (datagrams) may be lost
— messages may be reordered

e The sending process must know the address of the receivegg'ssocket.
How does it know this?

CS350 Operating Systems Fall 2010

Interprocess Communication 9

A Socket Address Convention

Servi ce Por t Descri ption

echo 7/ udp

syst at 11/tcp

net st at 15/tcp

char gen 19/ udp

ftp 21/ tcp

ssh 22/ tcp # SSH Renote Logi n Protocol

t el net 23/tcp

sntp 25/ tcp

tinme 37/ udp

gopher 70/ tcp # Internet CGopher

finger 79/ tcp

VWY 80/tcp # Wor | dW deWeb HTTP

pop2 109/tcp # POP version 2

i map2 143/t cp # | MAP

CS350 Operating Systems Fall 2010
Interprocess Communication 10

Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM;
bi nd(s, addr ess) ;

i sten(s, backl og);

ns = accept (s, sourceAddr ess);
recv(ns, buf, buf Lengt h) ;

send(ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don't accept nore connections

| i st en specifies the number of connection requests for this sobkéfntill
be queued by the kernel

accept accepts a connection request and creates a new socKet (

r ecv receives up teouf Lengt h bytes of data from the connection

send sendsuf Lengt h bytes of data over the connection.

CS350 Operating Systems Fall 2010

Interprocess Communication 11

Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockeatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of
the socket that has made the connection request

¢ additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)

CS350 Operating Systems Fall 2010

Interprocess Communication 12

Using Stream Sockets (Active Process)

s = socket (addressType, SOCK STREAM ;
connect (s, target Addr ess) ;

send(s, buf, buf Lengt h) ;

recv(s, buf, buf Lengt h) ;

.o._.ommA S);

e connect sends a connection request to the socket with the specifirdsxl

— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the $@ukangbi nd)
before connecting. This is the address that will be retutnetheaccept
call in the passive process

e if the active process does not choose an address, the systethomse one

CS350 Operating Systems Fall 2010

Interprocess Communication 13

lllustration of Stream Socket Connections

m queue of connection request:

s [TTTH s
s2
s3
socket
process 1 process 2
(active) (passive)
process 3
(active)
CS350 Operating Systems Fall 2010
Interprocess Communication 14
Pipes

e pipes are communication objects (not end-points)
e pipes use the stream model and are connection-orientecthable
e some pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits tne to
communication betweerelated processes, typically a child process and its
parent

e api pe() system call creates a pipe and returns two descriptors,arreath
end of the pipe
— for a simplex pipe, one descriptor is for reading, the otedoi writing

— for a duplex pipe, both descriptors can be used for readidgnaiting

CS350 Operating Systems Fall 2010

Interprocess Communication 15

One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char n[] = "nessage for parent”;

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

if (pid ==10) {
/1 child executes this
close(fd[0]); // close read end of pipe
wite(fd[1], m 19);

} else {
/'l parent executes this
close(fd[1]); // close wite end of pipe
read(fd[0],y, 100);

CS350 Operating Systems Fall 2010

Interprocess Communication 16

lllustration of Example (after pi pe())

parent process

CS350 Operating Systems Fall 2010

Interprocess Communication 17
lllustration of Example (after f ork())
parent process child proce:
CS350 Operating Systems Fall 2010
Interprocess Communication 18

lllustration of Example (after cl ose())

parent process

child proces

CS350

Operating Systems Fall 2010

Interprocess Communication 19

Examples of Other Interprocess Communication Mechanisms

named pipe:
e similar to pipes, but with an associated name (usually a &lee)
e name allows arbitrary processes to communicate by opehegame
named pipe
e must be explicitly deleted, unlike an unnamed pipe
message queue:
¢ like a named pipe, except that there are message boundaries

e nsgsend call sends a message into the quetssgr ecv call receives the
next message from the queue

CS350 Operating Systems Fall 2010

Interprocess Communication 20

Signals

signals permit asynchronous one-way communication
— from a process to another process, or to a group of procesadke kernel

— from the kernel to a process, or to a group of processes

there are many types of signals

the arrival of a signal may cause the execution afgaal handler in the
receiving process

there may be a different handler for each type of signal

CS350 Operating Systems Fall 2010

Interprocess Communication 21

Examples of Signal Types

Si gnal Val ue Acti on Coment
SI G NT 2 Term Interrupt from keyboard
SIALL 4 Core Il1legal Instruction
SI &I LL 9 Term Kill signal
SIGCHLD 20, 17, 18 I gn Child stopped or term nated
SI GBBUS 10,7, 10 Core Bus error

SI GXCPU 24, 24, 30 Core CPUtinme limt exceeded
SI GSTOP 17,19, 23 St op Stop process

CS350 Operating Systems Fall 2010

Interprocess Communication 22

Signal Handling

operating system determines default signal handling foln @&w process

example default actions:
— ignore (do nothing)
— Kkill (terminate the process)

— stop (block the process)

a running process can change the default for some typesradlsig

signal-related system calls
— calls to set non-default signal handlers, e.g., Wsiignal , si gacti on

— calls to send signals, e.g., Unx | |

CS350 Operating Systems Fall 2010

Interprocess Communication 23

Implementing IPC

e application processes use descriptors (identifiers) dealby the kernel to
refer to specific sockets and pipes, as well as files and oti)ects

e kerneldescriptor tables (or other similar mechanism) are used to associate
descriptors with kernel data structures that implementdBjécts

e kernel provides bounded buffer space for data that has legmusing an IPC
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a perembjbasis

— IPC end points, like sockets, buffering is associated waitheendpoint

I~ A

m<m8§nm__ /J Ucmmq T\ m<m$anm__
interface interface

operating system

CS350 Operating Systems Fall 2010

Interprocess Communication 24

Network Interprocess Communication

e some sockets can be used to connect processes that aregranrdifferent
machines

e the kernel:
— controls access to network interfaces

— multiplexes socket connections across the network

T
7

|
\{ N

’
’
’
,
7

J operating

network interface| SYSteM

oumqm::m/ A
system

n
]
]

ngtwork interface

I

@

CS350 Operating Systems Fall 2010

Interprocess Communication 25

Networking Reference Models

e |ISO/OSI Reference

Model
7 | Application Layer | ™M
B layer N+1 protocol
6 | Presentation Layer LayerNF oo oo - teverh
m mmwm_OJ _Im.V\mq. layer N service
layer N protocol
4 | Transport Layer Layer N [==-o-ommomomom oo 7| Lavern
3 Network Layer H H
2 | Data Link Layer e e
“_. n_\dv\m_ow_ _Im.<m—. layer 1 protocol
Layer 1 Layer 1
¢ Internet Model
— layers 1-4 and 7
CS350 Operating Systems Fall 2010
Interprocess Communication 26

Internet Protocol (IP): Layer 3

e every machine has one (or more) IP address, in addition tateslink layer
address(es)

e In IPv4, addresses are 32 bits, and are commonly writtergusiot” notation,
e.g.:
— cpu06.student.cs 129.97.152.106
— www.google.ca= 216.239.37.99 or 216.239.51.104 or ...

¢ IP moves packets (datagrams) from one machine to anothérimeac

¢ principal function of IP igouting: determining the network path that a packet
should take to reach its destination

¢ |IP packet delivery is “best effort” (unreliable)

CS350 Operating Systems Fall 2010

Interprocess Communication 27

IP Routing Table Example

e Routing table for zonker.uwaterloo.ca, which is on threvoeks, and has IP
addresses 129.97.74.66, 172.16.162.1, and 192.168 (bfte per network):

Destination Gateway | Interface

172.16.162.* - vmnetl
129.97.74.* - ethO
192.168.148.* - vmnet8

default 129.97.74.1) ethO

e routing table key:
destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is ditlgc
reachable)

interface: which network interface to use to send this packet

CS350 Operating Systems Fall 2010

Interprocess Communication 28

Internet Transport Protocols

TCP: transport control protocol

e connection-oriented

e reliable

e Stream

e congestion control

e used to implement INET domain stream sockets
UDP: user datagram protocol

e connectionless

unreliable

datagram

no congestion control

used to implement INET domain datagram sockets

CS350 Operating Systems Fall 2010

Interprocess Communication 29

TCP and UDP Ports

e since there can be many TCP or UDP communications end psint&éts) on
a single machine, there must be a way to distinguish amomg the

e each TCP or UDP address can be thought of as having two parts:
(machine name, port number)

e The machine name is the IP address of a machine, and the pobemserves
to distinguish among the end points on that machine.

e INET domain socket addresses are TCP or UDP addresses (lilegpem
whether the socket is a stream socket or a datagram socket).

CS350 Operating Systems Fall 2010

Interprocess Communication 30

Example of Network Layers

Application Application
Process Process
Transport Transport
- — — = =~ m— — e — e — o — o —— i ——— >
Instance Instance
Network Network _; Network
Instance Instance 7 Instance Instance
Datg Link Data Link Data Link Datg Link
Instance Instance Instance Instance

]

gateways

CS350 Operating Systems Fall 2010

Interprocess Communication 31

Network Packets (UDP Example)

application message

UDP payload
-

UDP header application message

IP payload
-z pay S

IP Header | UDP headerny application message

Data Link Payload

Data Link Header | IP Header | UDP header| application message

CS350 Operating Systems Fall 2010

Interprocess Communication 32

BSD Unix Networking Layers

process

system calls

socket layer

M socket queues

protocol layer A
0
]

/ i
interface
queues M M M (IP) protocol queue

interface layer
(ethernet,PPP,loopback,...)

network network network
device device device

CS350 Operating Systems Fall 2010

