
1

CS 350 – Fall 2011
Current Topics:

Virtual Machines + Solid State Drives

Virtual Machines

2

Machine

CPU CPU Mem

Operating System

App 1 App 3App 2

Physical Machine with OS

Machine

CPU CPU Mem Net

Physical
Machine

CPU CPU Mem

Operating System

App 1 App 3App 2

Virtual Machines

Virtual Machine

Layer of Indirection (VMM)

3

Virtual Machines

CPU CPU Mem Net

Physical
Machine

CPU CPU Mem

Virtual Machine 1

CPU Mem Net

Virtual Machine 2

Operating System Operating System

Virtual Machine Monitor (VMM)

App 1 App 3App 2 App 4 App 5

Machine Virtualization

 A virtual machine abstracts the computing
resources of a physical machine into virtual
resources

 End users only see the virtual resources
 Can install their operating systems and run their

applications on the virtual machines

 A Virtual Machine Monitor (or Hypervisor) is a
software layer that implements the mapping from
virtual resources to physical resources
 A layer of indirection between virtual and physical
 Hides implementation details
 Controls mapping from abstract view to implementation

4

Virtual Machine Monitors

 Strong isolation between virtual machines

 Flexible mapping between virtual resources and
physical resources
 Can have more virtual resources than the corresponding

physical resources
 Can reallocate physical resources among VMs

 Pause, resume, checkpoint, and migrate virtual
machines

Why Use Virtual Machines?

 Server consolidation
 Traditional IT setup: one machine per application

(DBMS, web server, mail server, …)
 Provisioned for peak load. Usually under-utilized
 Instead, can run multiple applications on virtual machines

that share the same physical machine
 Save hardware costs and administration/operation costs

5

Why Use Virtual Machines?

 Improved manageability
 Dynamic provisioning of resources to VMs
 Migration of VMs for load balancing
 Migration of VMs to avoid down time during

upgrades

 Isolation between VMs
 Security
 Privacy
 Fault tolerance

Why Use Virtual Machines?

 Application compatibility
 Different environments for different applications

6

Why Use Virtual Machines?

 Software development and testing
 Multiple environments for development and

testing

 Software deployment
 Preconfigured virtual appliances
 Repositories of virtual appliances on the web

Why Not Use Virtual Machines?

 Performance penalty
 Indirection through VMM adds overhead

 Hiding details of physical resources
 Some applications make decisions based on

assumptions about the physical resources

7

CPU CPU Mem Net

Physical
Machine

Kernel
(privileged mode)

User Process
(user mode)

syscall/exception

Basic Approach to Virtualization

privileged
access

privileged
access

non-privileged
access

trap

Exception Handler

CPU CPU Mem Net

Physical
Machine

Operating System
(user mode)

User Process
(user mode)

Trap-and-Emulate Virtualization

trap

Virtual Machine Monitor
(privileged mode)Trap Handler

privileged
access

8

Trap-and-Emulate Virtualization

 Run VMM in privileged mode

 Run OS in user mode

 Privileged operations by the OS will trap

 Trap handler in VMM emulates these operations as
if they were run on the virtual machine

 Non-privileged operations can proceed as before
with no intervention from the VMM

Architectural Obstacles

 Some machine architectures are not easy to
virtualize
 Notable example: x86

 Not all privileged operations trap when run in user
mode
 Example: popf (pop stack into flags)

Privileged mode: change user and system flags
User mode: change user flags only, no trap

 Some privileged state is visible in user mode
 Example: Machine status word

 For an architecture like x86, trap-and-emulate
alone will not work

9

Virtualization Approaches

 Binary rewriting
 Operating system running in VM is unmodified
 VMM scans Guest OS memory for problematic

instructions and rewrites them
 Example: VMware Workstation

 Paravirtualization
 Software interface to VMM is not identical to hardware
 Operating systems need to be ported to run on VMM
 Simpler VMM and faster virtual machines than with

trap-and-emulate
 Example: Xen

Hardware Virtualization for x86

 Intel and AMD have both introduced processor
extensions to help virtualization (Intel VT, AMD-V)

 Processor is aware of multiple virtual machine
contexts (like process control blocks, but for entire
operating system)

 New instructions to start/resume a VM
 New privilege level for VMM
 VMM selects which events should trap (vmexit)

 Manipulating interrupt state, interacting with TLB,
accessing control registers, …

10

Solid State Drives

Solid State Drives

 Based on flash memory not magnetic recording
 No mechanical parts
 Capacities pushing toward 1TB
 Fast, expensive, different performance

characteristic compared to magnetic disks

11

SSD Performance

 Access data in units of pages
 Access is fast

 No mechanical seek
 Read is fast

 Especially for larger block sizes
 Writes are slow

 Especially small random writes

Writes in SSD

 No update-in-place writes
 Pages (512 bytes) grouped into erase blocks (up to

4MB)
 Steps to update a page:

1- Read whole erase block containing the page
2- Update page within erase block
3- Write whole erase block

 Every erase block has a lifetime O(100K-1M)

Pages
Erase block

12

Flash Optimized File Systems

 Locality not important
 Minimize small random writes
 Also make the drive wear out more evenly

 Log-structured file system
 File system blocks are written sequentially to a structure

called the log
 When writing a block, create a new version of the block

and write it at the end of the log. Keep old version.
 Update inode to reflect most recent version of each data

block
 In-memory data structure stores location of most recent

version of each inode

Flash in the Storage Hierarchy

 Flash drives are fast, but they are small and
expensive

SSD

Cold Data
Hot Data

(Permanent store or cache)

13

