
1

CS 350 – Fall 2011
Current Topics:

Virtual Machines + Solid State Drives

Virtual Machines

2

Machine

CPU CPU Mem

Operating System

App 1 App 3App 2

Physical Machine with OS

Machine

CPU CPU Mem Net

Physical
Machine

CPU CPU Mem

Operating System

App 1 App 3App 2

Virtual Machines

Virtual Machine

Layer of Indirection (VMM)

3

Virtual Machines

CPU CPU Mem Net

Physical
Machine

CPU CPU Mem

Virtual Machine 1

CPU Mem Net

Virtual Machine 2

Operating System Operating System

Virtual Machine Monitor (VMM)

App 1 App 3App 2 App 4 App 5

Machine Virtualization

 A virtual machine abstracts the computing
resources of a physical machine into virtual
resources

 End users only see the virtual resources
 Can install their operating systems and run their

applications on the virtual machines

 A Virtual Machine Monitor (or Hypervisor) is a
software layer that implements the mapping from
virtual resources to physical resources
 A layer of indirection between virtual and physical
 Hides implementation details
 Controls mapping from abstract view to implementation

4

Virtual Machine Monitors

 Strong isolation between virtual machines

 Flexible mapping between virtual resources and
physical resources
 Can have more virtual resources than the corresponding

physical resources
 Can reallocate physical resources among VMs

 Pause, resume, checkpoint, and migrate virtual
machines

Why Use Virtual Machines?

 Server consolidation
 Traditional IT setup: one machine per application

(DBMS, web server, mail server, …)
 Provisioned for peak load. Usually under-utilized
 Instead, can run multiple applications on virtual machines

that share the same physical machine
 Save hardware costs and administration/operation costs

5

Why Use Virtual Machines?

 Improved manageability
 Dynamic provisioning of resources to VMs
 Migration of VMs for load balancing
 Migration of VMs to avoid down time during

upgrades

 Isolation between VMs
 Security
 Privacy
 Fault tolerance

Why Use Virtual Machines?

 Application compatibility
 Different environments for different applications

6

Why Use Virtual Machines?

 Software development and testing
 Multiple environments for development and

testing

 Software deployment
 Preconfigured virtual appliances
 Repositories of virtual appliances on the web

Why Not Use Virtual Machines?

 Performance penalty
 Indirection through VMM adds overhead

 Hiding details of physical resources
 Some applications make decisions based on

assumptions about the physical resources

7

CPU CPU Mem Net

Physical
Machine

Kernel
(privileged mode)

User Process
(user mode)

syscall/exception

Basic Approach to Virtualization

privileged
access

privileged
access

non-privileged
access

trap

Exception Handler

CPU CPU Mem Net

Physical
Machine

Operating System
(user mode)

User Process
(user mode)

Trap-and-Emulate Virtualization

trap

Virtual Machine Monitor
(privileged mode)Trap Handler

privileged
access

8

Trap-and-Emulate Virtualization

 Run VMM in privileged mode

 Run OS in user mode

 Privileged operations by the OS will trap

 Trap handler in VMM emulates these operations as
if they were run on the virtual machine

 Non-privileged operations can proceed as before
with no intervention from the VMM

Architectural Obstacles

 Some machine architectures are not easy to
virtualize
 Notable example: x86

 Not all privileged operations trap when run in user
mode
 Example: popf (pop stack into flags)

Privileged mode: change user and system flags
User mode: change user flags only, no trap

 Some privileged state is visible in user mode
 Example: Machine status word

 For an architecture like x86, trap-and-emulate
alone will not work

9

Virtualization Approaches

 Binary rewriting
 Operating system running in VM is unmodified
 VMM scans Guest OS memory for problematic

instructions and rewrites them
 Example: VMware Workstation

 Paravirtualization
 Software interface to VMM is not identical to hardware
 Operating systems need to be ported to run on VMM
 Simpler VMM and faster virtual machines than with

trap-and-emulate
 Example: Xen

Hardware Virtualization for x86

 Intel and AMD have both introduced processor
extensions to help virtualization (Intel VT, AMD-V)

 Processor is aware of multiple virtual machine
contexts (like process control blocks, but for entire
operating system)

 New instructions to start/resume a VM
 New privilege level for VMM
 VMM selects which events should trap (vmexit)

 Manipulating interrupt state, interacting with TLB,
accessing control registers, …

10

Solid State Drives

Solid State Drives

 Based on flash memory not magnetic recording
 No mechanical parts
 Capacities pushing toward 1TB
 Fast, expensive, different performance

characteristic compared to magnetic disks

11

SSD Performance

 Access data in units of pages
 Access is fast

 No mechanical seek
 Read is fast

 Especially for larger block sizes
 Writes are slow

 Especially small random writes

Writes in SSD

 No update-in-place writes
 Pages (512 bytes) grouped into erase blocks (up to

4MB)
 Steps to update a page:

1- Read whole erase block containing the page
2- Update page within erase block
3- Write whole erase block

 Every erase block has a lifetime O(100K-1M)

Pages
Erase block

12

Flash Optimized File Systems

 Locality not important
 Minimize small random writes
 Also make the drive wear out more evenly

 Log-structured file system
 File system blocks are written sequentially to a structure

called the log
 When writing a block, create a new version of the block

and write it at the end of the log. Keep old version.
 Update inode to reflect most recent version of each data

block
 In-memory data structure stores location of most recent

version of each inode

Flash in the Storage Hierarchy

 Flash drives are fast, but they are small and
expensive

SSD

Cold Data
Hot Data

(Permanent store or cache)

13

