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Intro 1

What is an Operating System?

e Three views of an operating system
Application View: what services does it provide?
System View: what problems does it solve?

Implementation View: how is it built?

An operating system is part cop, part facilitator.
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Intro 2

Application View of an Operating System

e The OS provides an execution environment for running programs.

— The execution environment provides a program with the processor time anc
memory space that it needs to run.

— The execution environment provides interfaces through which a program ca

use networks, storage, /0O devices, and other system hardware component

x Interfaces provide a simplified, abstract view of hardware to application
programs.

— The execution environment isolates running programs from one another an
prevents undesirable interactions among them.
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Intro 3

Other Views of an Operating System

System View: The OS manages the hardware resources of a computer system.

e Resources include processors, memory, disks and other storage devices,
network interfaces, I1/0 devices such as keyboards, mice and monitors, and
So on.

e The operating system allocates resources among running programs. It
controls the sharing of resources among programs.

e The OS itself also uses resources, which it must share with application
programs.
Implementation View: The OS is a concurrent, real-time program.

e Concurrency arises naturally in an OS when it supports concurrent
applications, and because it must interact directly with the hardware.

e Hardware interactions also impose timing constraints.
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The Operating System and the Kernel

e Some terminology:

kernel: The operating system kernel is the part of the operating system that
responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and
may include other related programs that provide services for applications.
This may include things like:
— utility programs
— command interpreters
— programming libraries
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Intro 5

Schematic View of an Operating System
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Operating System Abstractions

e The execution environment provided by the OS includes a variety of abstract
entities that can be manipulated by a running program. Examples:

files and file systems:abstract view of secondary storage
address spacesabstract view of primary memory
processes, threads:abstract view of program execution

sockets, pipes:abstract view of network or other message channels

e This course will cover
— why these abstractions are designed the way they are
— how these abstractions are manipulated by application programs
— how these abstractions are implemented by the OS
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Intro

Course Outline

Introduction

Threads and Concurrency
Synchronization

Processes and the Kernel

Virtual Memory

Scheduling

Devices and Device Management
File Systems

Interprocess Communication and Networking (time permitting)
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Threads and Concurrency

Review: Program Execution

e Registers

— program counter, stack pointer,.
e Memory

— program code

— program data

— program stack containing procedure activation records
e CPU

— fetches and executes instructions
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Threads and Concurrency 2
Review: MIPS Register Usage

RO, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assenbler

R2, vO = ## return value / system call nunber

R3, vl = ## return val ue

R4, a0 = ## 1st argunent (to subroutine)

R5, al = ## 2nd ar gunent

R6, a2 = ## 3rd argunent

R7, a3 = ## 4th argunent
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Threads and Concurrency 3

Review: MIPS Register Usage

RO8-R15, t0-t7 = ## tenps (not preserved by subroutines)
R24-R25, t8-t9 = ## tenps (not preserved by subroutines)
#it can be used wi thout saving
R16- R23, s0-s7 = ## preserved by subroutines
##  save before using,
## restore before return
R26- 27, kO-k1l = ## reserved for interrupt handl er

R28, ap = ## gl obal pointer

## (for easy access to sone vari abl es)
R29, sp = ## stack pointer
R30, s8/fp = ## 9th subroutine reg / franme pointer
R31, ra = ## return addr (used by jal)
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What is a Thread?

e A thread represents the control state of an executing program.

e Athread has an associatedntext(or state), which consists of

— the processor’'s CPU state, including the values of the program counter (PC
the stack pointer, other registers, and the execution mode
(privileged/nonprivileged)

— a stack, which is located in the address space of the thread’s process

Imagine that you would like to suspend the program executod,resume

it again later. Think of the thread context as the information you would
need in order to restart program execution from where it left off when it was
suspended.
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Threads and Concurrency 5
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Threads and Concurrency

Concurrent Threads

e more than one thread may exist simultaneously (why might this be a good
idea?)

e each thread has its own context, though they may share access to program co
and data

e 0on a uniprocessor (one CPU), at most one thread is actually executing at any
time. The others are paused, waiting to resume execution.

e on a multiprocessor, multiple threads may execute at the same time, but if ther
are more threads than processors then some threads will be paused and waiti
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Threads and Concurrency 7

Example: Concurrent Mouse Simulations

static void nouse_sinmulation(void * unusedpoi nter,
unsi gned | ong nousenumnber)

int i; unsigned int bow ;

for(i=0;i<Nunloops;i++) {
[+ for now, this nobuse chooses a random bowl from
* which to eat, and it is not synchronized with
* other cats and mce

/* legal bow nunbers range from1l to NunBow s x/
bowl = ((unsigned int)randon() % NunBowl s) + 1
nouse_eat (bow ) ;

}

/* indicate that this mouse is finished =/
V( Cat MouseWai t);
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Implementing Threads

e athread library is responsibile for implementing threads

¢ the thread library stores threads’ contexts (or pointers to the threads’ contexts)
when they are not running

¢ the data structure used by the thread library to store a thread context is
sometimes called tread control block

In the OS/161 kernel's thread implementation, thread castase stored in
t hr ead structures.
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Threads and Concurrency 9
Thread Library and Two Threads
memory
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thread 2 context (waiting thread)
CPU registers thread 1 context (running thread)
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The OS/161t hr ead Structure

/* see kern/include/thread.h */

struct thread {

char *t_narme;

const char *t_wchan_nane;
threadstate t t_state;

[ *
| *
| *

Wi t

/* Thread subsystem i nternal
struct thread_machdep t_machdep;
struct threadlistnode t_|istnode;

voi d =t _stack; [ *
struct switchframe *t_context; /=*
struct cpu *t_cpu; [ *
struct proc *t_proc; [ *

fields.
/* Any machi ne- dependent goo =/

Name of this thread */

channel nane, if sleeping */

State this thread is in */

*/

/* run/sleep/zonbie lists x/
Kernel -1 evel stack =/
Regi ster context (on stack)
CPU thread runs on =/
Process thread bel ongs to */

*/
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Threads and Concurrency 11

Thread Library and Two Threads (0S/161)
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Context Switch, Scheduling, and Dispatching

the act of pausing the execution of one thread and resuming the execution of
another is called é&hread) context switch

what happens during a context switch?

1. decide which thread will run next
2. save the context of the currently running thread
3. restore the context of the thread that is to run next

the act of saving the context of the current thread and installing the context of
the next thread to run is calletispatching(the next thread)

sounds simple, but .
— architecturespecific implementation
— thread must save/restore its context carefully, since thread execution
continuously changes the context
— can be tricky to understand (at what point does a thread actually stop? wha
is it executing when it resumes?)

CS350 Operating Systems Fall 2013
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Threads and Concurrency 13

Dispatching on the MIPS (1 of 2)
[+ See kern/arch/m ps/thread/switch.S */

swi tchfranme_swi tch:
[+ a0: address of switchframe pointer of old thread. =/
/+ al: address of switchframe pointer of new thread. =/

/+ Allocate stack space for saving 10 registers. 10«4 = 40 =/
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw  gp, 32(sp)
sw  s8, 28(sp)
sSW  s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw  s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0O(sp)

[+ Store the old stack pointer in the old thread =/
sw sp, 0(a0)
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Dispatching on the MIPS (2 of 2)

/+* Get the new stack pointer fromthe new thread */
lw sp, 0(al)
nop /+ delay slot for load */

[+ Now, restore the registers */
lw s0, 0(sp)

lw sl1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /+ delay slot for load */

[+ and return. =/

j ra

addi sp, sp, 40 /* in delay slot =/
.end switchfranme_sw tch

CS350 Operating Systems Fall 2013
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Threads and Concurrency 15

Dispatching on the MIPS (Notes)

¢ Not all of the registers are saved during a context switch

e This is because the context switch code is reached via a call to
t hr ead_sw t ch and by convention on the MIPS not all of the registers are
required to be preserved across subroutine calls

e thus, after a call tewi t chf r ame_swi t ch returns, the caller
(t hread_sw t ch) does not expect all registers to have the same values as
they had before the callto save time, those registers are not preserved by the
switch

e if the caller wants to reuse those registers it must save and restore them

CS350 Operating Systems Fall 2013

Threads and Concurrency 16

Thread Library Interface

¢ the thread library interface allows program code to manipulate threads
e one key thread library interface functionYgeld()

¢ Yield() causes the calling thread to stop and wait, and causes the thread library
to choose some other waiting thread to run in its place. In other words, Yield()
causes a context switch.

e in addition toYi el d(), thread libraries typically provide other thread-related
services:
— create new thread
— end (and destroy) a thread
— cause a thread tolock (to be discussed later)

CS350 Operating Systems Fall 2013
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Threads and Concurrency 17

The OS/161 Thread Interface (incomplete)

/= see kern/include/thread. h */

int thread_fork(const char *nanme, struct proc *proc,
void (*func)(void *, unsigned |ong),
voi d *datal, unsigned |ong data2);

|+ Cause the current thread to exit. x/
/= Interrupts need not be disabled. */
void thread _exit(void);

/* Let another thread run, caller stays runnable. =*/
void thread_yiel d(void);

/+ Potentially mgrate ready threads to other CPUs =/
voi d thread _consider_mgration(void);
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The OS/161 Thread / Wait Channel Interface (incomplete)

/= see kern/include/wchan. h =/
voi d wchan_l ock(struct wchan *wc);
voi d wchan_unl ock(struct wchan *wc);

/+* Sleep on a wait channel until awakened by soneone el se
* Channel nust be |ocked, and will have been =*unl ocked*
* upon return. =*/

voi d wchan_sl eep(struct wchan *wc);

/= Wake up one/all threads, sleeping on wait channel. =*/
/* Channel should not already be |ocked. =x/

voi d wchan_wakeone(struct wchan *wc);

voi d wchan_wakeal | (struct wchan *wc);

CS350 Operating Systems Fall 2013
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Threads and Concurrency 19

Creating Threads Usingt hr ead_f or k()

/= From ker n/ synchprobs/ cat nouse.c */
for (index = 0; index < NumM ce; index++) {
error = thread_fork("nmuse_simulation thread",
NULL, nouse_simul ation, NULL, index);
if (error) {
pani c("nouse_sinul ation: thread_fork failed: %\n",
strerror(error));

[+ wait for all of the cats and mce to finish */
for(i=0;i<(NunCats+NunM ce);i++) {
P( Cat MouseWi t) ;

}

CS350 Operating Systems Fall 2013
Threads and Concurrency 20
Scheduling

e scheduling means deciding which thread should run next
e scheduling is implemented bysgheduler, which is part of the thread library
e simple FIFO scheduling:
— scheduler maintains a queue of threads, often callecetiy queue
— the first thread in the ready queue is the running thread
— on a context switch the running thread is moved to the end of the ready
gueue, and new first thread is allowed to run
— newly created threads are placed at the end of the ready queue
e more on scheduling later .
CS350 Operating Systems Fall 2013
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Threads and Concurrency 21

Preemption
Yi el d() allows programs t@oluntarily pause their execution to allow
another thread to run

sometimes it is desirable to make a thread stop running even if it has not callec
Yi el d()

this kind ofinvoluntarycontext switch is callepreemptiorof the running
thread

to implement preemption, the thread library must have a means of “getting
control” (causing thread library code to be executed) even though the
application has not called a thread library function

this is normally accomplished usimgterrupts

CS350 Operating Systems Fall 2013
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Review: Interrupts

an interrupt is an event that occurs during the execution of a program

interrupts are caused by system devices (hardware), e.g., a timer, a disk
controller, a network interface

when an interrupt occurs, the hardware automatically transfers control to a fixe
location in memory

at that memory location, the thread library places a procedure called an
interrupt handler
the interrupt handler normally:

1. saves the current thread context (in OS/161, this is savettap frameon
the current thread’s stack)

2. determines which device caused the interrupt and performs dep@sfic
processing

3. restores the saved thread context and resumes execution in that context
where it left off at the time of the interrupt.

CS350 Operating Systems Fall 2013
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Threads and Concurrency 23

Round-Robin Scheduling

¢ round-robinis one example of a preemptive scheduling policy

e roundrobin scheduling is similar to FIFO scheduling, except that it is
preemptive

e as in FIFO scheduling, there is a ready queue and the thread at the front of the
ready queue runs

e unlike FIFO, a limit is placed on the amount of time that a thread can run beforg¢
it is preempted

e the amount of time that a thread is allocated is called the schedyliagtum

e when the running thread’s quantum expires, it is preempted and moved to the

back of the ready queue. The thread at the front of the ready queue is
dispatched and allowed to run.
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Implementing Preemptive Scheduling

e suppose that the system timer generates an interrupt éveng units, e.g.,
once every millisecond

e suppose that the thread library wants to use a scheduling quantuoot,
l.e., it will preempt a thread after half a second of execution

e to implement this, the thread library can maintain a variable called
runni ng_ti nme to track how long the current thread has been running:

— when a thread is intially dispatchedynni ng_ti ne is set to zero

— when an interrupt occurs, the timer-specific part of the interrupt handler can
incrementr unni ng_t i me and then test its value
« if runni ng_t i ne is less tham, the interrupt handler simply returns and
the running thread resumes its execution
« if runni ng_t i me is equal taz, then the interrupt handler invokes
Yi el d() to cause a context switch

CS350 Operating Systems Fall 2013
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25

0S/161 Stack after Preemption

application
”stacrk frqme(;)

trap frame

interrqpt handljng
stack frame(s)
thread_yield
stack Tr)émeo

thread_switch()
stack frame

saved thread context
(switchframe)

stack grow
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26

0S/161 Stack after Voluntary Context Switch ¢ hr ead_yi el d())

application
stack frame(s)

thread_yield()
stack frame

thread_switch
stack frame

saved thread context
(switchframe)

stack growth
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Synchronization 1

Concurrency
e On multiprocessors, several threads can execute simultaneously, one on each
processor.

¢ On uniprocessors, only one thread executes at a time. However, because of
preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on 00gssors.

CS350 Operating Systems Fall 2013

Synchronization 2

Thread Synchronization

e Concurrent threads can interact with each other in a variety of ways:

— Threads share access, through the operating system, to system devices (m
on this later. . .)

— Threads may share access to program data, e.g., global variables.
e A common synchronization problem is to enforoatual exclusiopwhich

means making sure that only one thread at a time uses a shared object, e.g., g
variable or a device.

e The part of a program in which the shared object is accessed is call@ctal
section

CS350 Operating Systems Fall 2013
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Synchronization 3

Critical Section Example (Part 0)

/* Note the use of volatile */

int volatile total = O0;
void add() { void sub() {
int i; int i;
for (i=0; i<N i++) { for (i=0; i<N, i++) {
t ot al ++; total --;
¥ ¥
} }

If one thread executesdd and another executessub what is the value of
t ot al when they have finished?

CS350 Operating Systems Fall 2013

Synchronization 4

Critical Section Example (Part 0)

/* Note the use of volatile */

int volatile total = O0;
void add() { void sub() {
| oadaddr R8 t ot al | oadaddr R10 t ot al
for (i=0; i<N i++) { for (i=0; i<N, i++) {
lw R9 0O(R8) lw R11 O(R10)
add RO 1 sub R11 1
sw R9 O(R8) sw R11 O(R10)
¥ }
} }
CS350 Operating Systems Fall 2013
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Synchronization 5

Critical Section Example (Part 0)

Thread 1 Thread 2
| oadaddr R8 total
lw RO O(R8) R9=0

add RO 1 Ro=1
<| NTERRUPT>
| oadaddr R10 t ot al
lw R11 O(R10) R11=0
sub R11 1 R11=-1
sw R11 0O(R10) total =-1
<| NTERRUPT>

sw RO O(R8) total =1

One possible order of execution.
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Critical Section Example (Part 0)

Thread 1 Thread 2
| oadaddr R8 total
lw RO 0(R8) R9=0

<| NTERRUPT>
| oadaddr R10 t ot al
lw R11 O(R10) R11=0
<| NTERRUPT>
add RO 1 R9=1
sw RO O(R8) total =1
<| NTERRUPT>

sub R11 1 R11=-1
sw R11 O( R10) total =-1

Another possible order of execution. Many interleavingsnatiiuctions are
possible. Synchronization is required to ensure a correct ordering.

CS350 Operating Systems Fall 2013
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Synchronization 7

The use of volatile

[ What if we DO NOT use volatile =/

int velatile total = O;
void add() { void sub() {
| oadaddr R8 t ot al | oadaddr R10 t ot al
| w RO 0(R8) lw R11 O(R10)
for (i=0; i<N i++) { for (i=0; i<N, i++) {
add RO 1 sub R11 1
¥ }
sw R9 0O(R8) sw R11 0(R10)
} }

Without volatile the compiler could optimize the code. If dheead executes
add and another executasib, what is the value of ot al when they have

finished?
CS350 Operating Systems Fall 2013
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The use of volatile

[ What if we DO NOT use volatile =/

int velatile total = O;
void add() { void sub() {
| oadaddr R8 t ot al | oadaddr R10 t ot al
| w RO 0(R8) |w R11 O(R10)
add RO N sub R11 N
sw RO O(R8) sw R11 0O(R10)
¥

The compiler could aggressively optimize the code., Vaatlls the com-

piler that the object may change for reasons which cannot be determined
from the local code (e.g., due to interaction with a device or because of an-

other thread).

CS350
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Synchronization 9

The use of volatile

/* Note the use of volatile */

int volatile total = O0;
void add() { void sub() {
| oadaddr R8 tot al | oadaddr R10 t ot al
for (i=0; i<N i++) { for (i=0; i<N, i++) {
lw R9 0(R8) lw R11 O(R10)
add R9 1 sub R11 1
sw R9 O(R8) sw R11 0O(R10)
¥ }
} }

The volatile declaration forces the compiler to load andestbe value on

every use. Using volatile is necessary but not sufficient for correct behaviour.
Mutual exclusion is also required to ensure a correct ordering of instructions.

CS350 Operating Systems Fall 2013
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Ensuring Correctness with Multiple Threads

/* Note the use of volatile */

int volatile total = O;
void add() { void sub() {
int i; int i;
for (i=0; i<N i++) { for (i=0; i<N i++) {
Al'low one thread to to execute and nmake others wait
t ot al ++; total --;
Permt one waiting thread to continue execution
¥ ¥
} }

Threads must enforce mutual exclusion.

CS350 Operating Systems Fall 2013
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Synchronization 11

Critical Section Example (Part 1)

int listoremovefront(list *xlp) {
int num
i st_el enent *el enent;

assert(!is_enpty(lp));

el ement = | p->first;

num = | p->first->item

if (Ip->first == Ip->last) {
[ p->first = Ip->last = NULL;

} else {

| p->first = el enent->next;
} .
| p->num.in_list--;
free(el enent);
return num

}
Thel i st _renove_f ront function is a critical section. It may not work
properly if two threads call it at the same time on the séingt . (Why?)
CS350 Operating Systems Fall 2013
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Critical Section Example (Part 2)

void |ist_append(list *=lp, int newitem {
list_element *elenment = malloc(sizeof(list_elenent));
el enent->item = new.item
assert(!isinlist(lp, newiten));
if (isenpty(lp)) {
| p->first = elenent; |p->last = el enent;
} else {
| p->l ast->next = elenent; |p->last = el enent;

}
| p- >numi n_l i st ++;

}
The |i st _append function is part of the same critical section as
l'ist_renmovefront. It may not work properly if two threads call
it at the same time, or if a thread calls it while another has called
list_renpve_front

CS350 Operating Systems Fall 2013
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Synchronization 13

Enforcing Mutual Exclusion

e mutual exclusion algorithms ensure that only one thread at a time executes the
code in a critical section

e several techniques for enforcing mutual exclusion

— exploit special hardwarspecific machine instructions, e.test-and-set
compare-and-swapr load-link / store-conditionalthat are intended for
this purpose

— use mutual exclusion algorithms, e.Beterson’s algorithmthat rely only
on atomic loads and stores

— control interrupts to ensure that threads are not preempted while they are
executing a critical section

CS350 Operating Systems Fall 2013
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Disabling Interrupts

e On a uniprocessor, only one thread at a time is actually running.

¢ If the running thread is executing a critical section, mutual exclusion may be
violated if

1. the running thread is preempted (or voluntarily yields) while it is in the
critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters
the same critical section that the preempted thread was in

e Since preemption is caused by timer interrupts, mutual exclusion can be
enforced by disabling timer interrupts before a thread enters the critical sectior
and re-enabling them when the thread leaves the critical section.

CS350 Operating Systems Fall 2013
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Synchronization 15

Interrupts in 0S/161

This is one way that the OS/161 kernel enforces mutual exclusion on a single
processor. There is a simple interface

e spl O() sets IPL to O, enabling all interrupts.

e spl hi gh() sets IPL to the highest value, disabling all interrupts.

e spl x(s) setsIPL to S, enabling whatever state S represents.
These are used by splx() and by the spinlock code.

e splraise(int oldipl, int new pl)

e spllower(int oldipl, int newpl)

e For splraiseNEW PL > OLDI PL, and for spllowerNEW PL < OLDI PL.

Seekern/i ncl ude/ spl . h andkern/t hread/ spl . c

CS350 Operating Systems Fall 2013

Synchronization 16

Pros and Cons of Disabling Interrupts

e advantages:
— does not require any hardwaspecific synchronization instructions

— works for any number of concurrent threads

¢ disadvantages:

— indiscriminate: prevents all preemption, not just preemption that would
threaten the critical section

— ignoring timer interrupts has side effects, e.g., kernel unaware of passage ¢

time. (Worse, OS/161’'spl hi gh() disablesall interrupts, not just timer
interrupts.) Keep critical sectiorshortto minimize these problems.

— will not enforce mutual exclusion on multiprocessors (why??)

CS350 Operating Systems Fall 2013
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Synchronization 17

Peterson’s Mutual Exclusion Algorithm

/= shared variabl es */

/* note: one flag array and turn variable */

/= for each critical section */

bool ean volatile flag[2]; /* shared, initially false =/

int volatile turn; /= shared =/
flag[i] = true; [+ for one thread, i=0 and j=1 =/
turn = j; [+ for the other, i=1 and j=0 */

while (flag[j] & & turn ==j) { } [/* busy wait =/
critical section /* e.g., call to list_renovefront =/

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but workg fom two
threads. (Why?)

CS350 Operating Systems Fall 2013

Synchronization 18

Hardware-Specific Synchronization Instructions

e atestand-set instructioatomicallysets the value of a specified memory
location and either

— places that memory locationidd value into a register, or

— checks a condition against the memory location’s old value and records the
result of the check in a register

e for presentation purposes, we will abstract such an instruction as a function
Test AndSet (addr ess, val ue), which takes a memory location
(addr ess) and a value as parameters. It atomically stor@sue at the
memory location specified byddr ess and returns the previous value stored
at that address

e Often only two values are used 0 and 1 sovla¢ ue parameter is not used and
a value of 1 is implied (e.g., in OS/161)

CS350 Operating Systems Fall 2013




Synchronization 19

A Spin Lock Using Test-And-Set in 0S/161

e atestand-set instruction can be used to enforce mutual exclusion

o for each critical section, define a shared variable
volatile spinlockdatat lklock; /* initially 0 */
We will use the lock variable to keep track of whether there is a thread in the
critical section, in which case the valueldf_| ock will be 1

e before a thread can enter the critical section, it does the following:

whi | e (spinlock_data.testandset (& k->Ik_lock) !'=0) {
[* busy wait x/

}

o if | k_l ock == Othenitis setto 1 and the thread enters the critical section

o when the thread leaves the critical section, it does:

spi nl ock _dat a_set (& k->I k_l ock, 0);

CS350 Operating Systems Fall 2013
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A Spin Lock Using Test-And-Set

¢ this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known aspen lock since a thread “spins” in
the while loop until the critical section is free. Spin locks are widely used on
multiprocessors.
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Spinlocks in 0S/161

struct spinlock {
vol atile spinlock _data_t |k _lock; /* word for spin =/
struct cpu *l k_holder; /+ CPU holding this |lock =/

s

voi d spinlock init(struct spinlock *Ik);

voi d spinlock _cl eanup(struct spinlock *Ilk);
voi d spinlock _acquire(struct spinlock *Ilk);
voi d spinlock_rel ease(struct spinlock *lk);
bool spinlock_do_i _hold(struct spinlock *IlKk);
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Spinlocks in 0S/161

spinlock_init(struct spinlock *IKk)

{
spi nl ock_data set (& k->Ik_| ock, 0);
| kK->l k_hol der = NULL;
}
voi d spinlock_cl eanup(struct spinlock =*Ik)
{
KASSERT( | k- >l k_hol der == NULL);
KASSERT( spi nl ock_data_get (& k->I k_| ock) == 0);
}

voi d spinlock data set(volatile spinlock data t =*sd,
unsi gned val)

{

x*sd = val
}
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Spinlocks in 0S/161

voi d spinlock_acquire(struct spinlock =*|k)
{

struct cpu *mycpu;

splraise(l PL_NONE, |PL_H GH;

/+* this nust work before curcpu initialization «/
i f (CURCPU_EXI STS()) {

mycpu = curcpu->c_sel f;

if (Ik->Ik_holder == nmycpu) {

pani c( " Deadl ock on spinlock %\n", |Kk);

}
} else {

mycpu = NULL;
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Spinlocks in 0S/161

while (1) {
/* Do test-test-and-set to reduce bus contention =*/
if (spinlock _data_get(& k->Ik_lock) !'=0) {
conti nue;

}
if (spinlock data_ testandset (& k->Ik lock) !'= 0) {
conti nue;

}

br eak;

| k->I k_hol der = nycpu;
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Spinlocks in 0S/161

voi d spinlock_rel ease(struct spinlock =*Ik)
{
/* this nust work before curcpu initialization «/
i f (CURCPU_EXI STS()) {
KASSERT( | k- >l k_hol der == curcpu->c_sel f);

| kK->l k_hol der = NULL;
spi nl ock_dat a_set (& k->I k_| ock, 0);
spl lower (1 PL_H GH, |PL_NONE);
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Load-Link / Store-Conditional

Loadlink returns the current value of a memory location, while a subsequent
store-conditional to the same memory location will store a new value only if no
updates have occurred to that location since the load-link.

spi nl ock_data testandset(volatile spinlock data t =*sd)

{

spi nl ock_data_t x,vy;

/= Test-and-set using LL/SC.

* Load the existing value into X, and use Y to store 1.

* After the SC, Y contains 1 if the store succeeded,
* 0 if it failed. On failure, return 1 to pretend
* that the spinlock was al ready hel d.
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Load-Link / Store-Conditional

__asmvolatil e

".set push;” /= save assenbl er node =/
".set mps32;" /* allow MPS32 instructions =/
".set volatile;" [/* avoid unwanted optim zation */
"Il %0, 0(%);" [ * X = xsd */
"sc wd, O(w);" [ * *sd = y; y = success? */
".set pop" /* restore assenbl er node =*/
II:rII (X), Il+rll (y) : Ilrll (Sd));
if (y ==0) {
return 1;
}
return x;
}
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Pros and Cons of Spinlocks
e Pros:
— can be efficient for short critical sections
— using hardware specific synchronization instructions means it works on
multiprocessors
e Cons:
— CPU is busy (nothing else runs) while waiting for lock
— starvation is possible
If critical section is short prefer spinlock.
If critical section is long prefer blocking lock.
Hybrid locks will spin for a period of time before blocking.
Question: How to determine how long to spin for hybrid lock?
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Semaphores

e A semaphore is a synchronization primitive that can be used to enforce mutua

exclusion requirements. It can also be used to solve other kinds of
synchronization problems.

e A semaphore is an object that has an integer value, and that supports two
operations:

P: if the semaphore value is greater thtardecrement the value. Otherwise,
wait until the value is greater thanand then decrement it.

V: increment the value of the semaphore

e Two kinds of semaphores:
counting semaphores:can take on any nenegative value

binary semaphores: take on only the valuegand1. (V on a binary
semaphore with valué has no effect.)

By definition, theP and V operations of a semaphore at®mic
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A Simple Example using Semaphores

void add() { void sub() {
int i; int i;
for (i=0; i<N i++) { for (i=0; i<N i++) {
P(sen); P(sen;
t ot al ++; total --:
V(sem; V(sem;
¥ ¥
} }

What type of semaphore can be useddenf
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0S/161 Semaphores

struct semaphore {
char *semnane;
struct wchan *semwchan;
struct spinlock seml ock;
vol atile int semcount;

&

struct semaphore *semcreate(const char =*nane,
int initial _count);

voi d P(struct semaphore *s);

voi d V(struct semaphore *s);

voi d semdestroy(struct senmaphore =*s);

seeker n/ i ncl ude/ synch. h andker n/t hread/ synch. c
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Mutual Exclusion Using a Semaphore

struct senmaphore =*s;
s = semcreate("MySeml", 1); /* initial value is 1 */

P(s); /* do this before entering critical section =/
critical section /+* e.g., call to list_renovefront =/

V(s); /* do this after leaving critical section x/
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0S/161 SemaphoresP() from kern/thread/ synch. c
P(struct semaphore *sem
{
KASSERT(sem ! = NULL);
KASSERT(curthread->t .in_.interrupt == fal se);

spi nl ock_acqui re( &sem >seml ock) ;
whil e (sem >semcount == 0) {
/* Note: we don’t maintain strict FIFO ordering */
wchan_| ock(sem >semwchan) ;
spi nl ock_rel ease( &sem >seml ock) ;
wchan_sl eep(sem >semwchan) ;
spi nl ock_acqui re( &sem >seml ock) ;
¥
KASSERT(sem >semcount > 0);
sem >semcount - -;
spi nl ock_rel ease( &em >seml ock) ;
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0S/161 SemaphoresY() from kern/thread/ synch. c

V(struct semaphore *sem

{
KASSERT(sem ! = NULL);

spi nl ock_acqui re( &em >seml ock) ;
sem >semcount ++;
KASSERT( sem >semcount > 0);

wchan_wakeone(sem >semwchan) ;

spi nl ock_rel ease( &em >seml ock) ;

}
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Thread Blocking

e Sometimes a thread will need to wait for an event. One example is on the
previous slide: a thread that attempt8(g operation on a zergalued
semaphore must wait until the semaphore’s value becomes positive.

e other examples that we will see later on:

— wait for data from a (relatively) slow device
— wait for input from a keyboard
— wait for busy device to become idle

e In these circumstances, we do not want the thread to run, since it cannot do
anything useful.

e To handle this, the thread scheduler bdockthreads.
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Thread Blocking in OS/161

e OS/161 thread library functions:
—void wchan_sl eep(struct wchan *wc)
x blocks calling thread on wait channst
— void whan_wakeal | (struct wchan *wc)
« unblock all threads sleeping on wait channel
— voi d wchan_wakeone(struct wchan *wc)
x unblock one thread sleeping on wait chanrel
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Thread Blocking in OS/161

e wchan_sl eep() is much liket hr ead_yi el d() . The calling thread is
voluntarily giving up the CPU, so the scheduler chooses a new thread to run, th
state of the running thread is saved and the new thread is dispatched. Howeve

— after at hr ead_yi el d(), the calling thread iseadyto run again as soon
as it is chosen by the scheduler

— afterawchan_sl eep() , the calling thread iblocked and must not be
scheduled to run again until after it has been explicitly unblocked by a call
towchan_wakeone() orwchan_wakeal | ().
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Thread States

e avery simple thread state transition diagram

guantum expires
or thread_yield()

dispatch

got resource or event need resource or event

(thread_wakeup()) (thread_sleep())
blocked

¢ the states:
running: currently executing
ready: ready to execute

blocked: waiting for something, so not ready to execute.
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Producer/Consumer Synchronization
e suppose we have threads that add items to a list (producers) and threads that
remove items from the list (consumers)

e suppose we want to ensure that consumers do not consume if the list is-.empty
instead they must wait until the list has something in it

e this requires synchronization between consumers and producers

e semaphores can provide the necessary synchronization, as shown on the nex{

slide
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Producer/Consumer Synchronization using Semaphores

struct senmaphore =*s;
s = semcreate("ltens", 0); /* initial value is 0 */

Pr oducer’ s Pseudo- code:
add itemto the list (call 1ist_append())
V(s);

Consuner’ s Pseudo- code:
P(s);
renove itemfromthe list (call list_oremovefront())

The Items semaphore does not enforce mutual exclusion omsthdflwe
want mutual exclusion, we can also use semaphores to enforce it. (How?)
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Bounded Buffer Producer/Consumer Synchronization

e suppose we add one more requirement: the number of items in the list should
not exceed\

e producers that try to add items when the list is full should be made to wait until
the list is no longer full
e We can use an additional semaphore to enforce this new constraint:

— semaphoré&ul | is used to count the number of full (occupied) entries in
the list (to ensure nothing is produced if the list is full)

— semaphor&npt y is used to count the number of empty (unoccupied)
entries in the list (to ensure nothing is consumed if the list is empty)

struct semaphore *full;
struct semaphore *enpty;

full = semcreate("Full", 0); /= initial value = 0 */
enpty = semcreate("Enpty", N); /* initial value = N =/
CS350 Operating Systems Fall 2013
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Bounded Buffer Producer/Consumer Synchronization with Seraphores

Pr oducer’s Pseudo- code:

P(enpty);
add itemto the list (call 1ist_append())
V(full);

Consuner’s Pseudo- code:

P(full);
renove itemfromthe list (call list_oremovefront())
V(enpty);
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0S/161 Locks

e OS/161 also uses a synchronization primitive callédck Locks are intended
to be used to enforce mutual exclusion.

struct lock *mylock = | ock_create("LockNanme");

| ock_aqui re(nyl ock);
critical section /* e.g., call to list_renovefront =/
| ock_r el ease( nmyl ock) ;

e A lock is similar to a binary semaphore with an initial value of 1. However,
locks also enforce an additional constraint: the thread that releases a lock mus
be the same thread that most recently acquired it.

e The system enforces this additional constraint to help ensure that locks are us

as intended.
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Reader/Writer Locks

e Reader/Writer (or a shared) locks can be acquired in either of read (shared) or
write (exclusive) mode

e In OS/161 reader/writer locks might look like this:

struct rw ock *rwl ock = rwl ock_create("RANock");

rw ock_aquire(rw ock, READ _ MODE);
can only read shared resources
/| = access is shared by readers =/
rw ock_rel ease(rw ock);

rw ock_aquire(rw ock, WRI TE_MODE) ;
can read and wite shared resources
/* access is exclusive to only one witer =*/
rw ock_rel ease(rw ock);
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Critical Section Requirements
e Mutual exclusion While one thread is executing in the critical section no other
thread can execute in that critical section.

e Progress: The thread in the critical section will eventually leave the critical
section.

e Bounded waiting: Any thread will wait for a bounded amount of time before it
is able to enter the critical section.
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Performance Issues
e Overhead the memory and CPU resources used when acquiring and releasing
access to critical sections
e Contention: competition for access to the critical section

e Granularity : the amount of code executed while in a critical section

Why are these important issues?
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Lock Overhead, Contention and Granularity (Option 1)

void add() { void sub() {
int i; int i;
for (i=0; i<N i++) { for (i=0; i<N i++) {
P/ Acquire P/ Acquire
t ot al ++; total --;
V /| Rel ease V |/ Rel ease
¥ }
} }

ShouldoneusB() / V() ,spi nl ock_acquire()/spinl ock_rel ease()
orl ock_acquire()/1 ock_rel ease?
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Lock Overhead, Contention and Granularity (Option 2)

void add() { void sub() {
int i; int i;
P/ Acquire P/ Acquire
for (i=0; i<N i++) { for (i=0; i<N i++) {
t ot al ++; total --;
¥ }
V /| Rel ease V /| Rel ease
} ¥

Which option is better Option 1 (previous slide) or 2 (thisle)? Why?

Does the choice of where to do synchronization influence the choice of which

mechanism to use for synchronization?
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Condition Variables

0S/161 supports another common synchronization primiteedition
variables

each condition variable is intended to work together with a lock: condition
variables are only useidom within the critical section that is protected by the
lock

three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases the lock associat¢
with the condition variable. Once the thread is unblocked it reacquires the
lock.

signal: If threads are blocked on the signaled condition variable, then one of
those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the
condition variable.
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Using Condition Variables

Condition variables get their name because they allow threads to wait for
arbitrary conditions to become true inside of a critical section.

Normally, each condition variable corresponds to a particular condition that is
of interest to an application. For example, in the bounded buffer
producer/consumer example on the following slides, the two conditions are:

— count > 0 (condition variablenot enpt y)
— count < N (condition variablenot f ul | )

when a condition is not true, a thread asai t on the corresponding condition
variable until it becomes true

when a thread detects that a condition is true, it ssegnal or br oadcast
to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition vdaathat has no
waiters haso effect Signals do not accumulate.
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Waiting on Condition Variables

e when a blocked thread is unblocked ygnal orbr oadcast), it
reacquires the lock before returning from thei t call

e athread is in the critical section when it calai t , and it will be in the critical
section whemai t returns. However, in between the call and the return, while
the caller is blocked, the caller is out of the critical section, and other threads
may enter.

¢ In particular, the thread that caks gnal (or br oadcast ) to wake up the
waiting thread will itself be in the critical section when it signals. The waiting
thread will have to wait (at least) until the signaller releases the lock before it
can unblock and return from thveai t call.

This describes Messtyle condition variables, which are used in OS/161.
There are alternative condition variable semantics (Hoare semantics), which
differ from the semantics described here.
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Bounded Buffer Producer Using Condition Variables

int volatile count = 0; /* must initially be 0 */
struct | ock *nutex; [+ for mutual exclusion */
struct cv *notfull, =*notenpty; /* condition variables */

/= Initialization Note: the |ock and cv’'s nust be created
* using |lock.create() and cv.create() before Produce()
* and Consune() are called =/

Produce(itenlype iten) {
| ock_acqui r e( mut ex) ;
while (count == N) {
cvwait(notfull, nutex);
}

add itemto buffer (call 1ist_append())
count = count + 1,

cv_si gnal (notenpty, nutex);

| ock_rel ease( mut ex) ;

}
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Bounded Buffer Consumer Using Condition Variables

i tenlfype Consume() {
| ock_acqui r e( mut ex) ;
while (count == 0) {
cv_wai t (notenpty, mutex);

}

renove itemfrombuffer (call list_renovefront())
count = count - 1,

cv.signal (notfull, nutex);

| ock_r el ease( nut ex) ;
return(item;

Both Pr oduce() andConsune() callcv_wait () inside of awhi | e
loop. Why?
CS350 Operating Systems Fall 2013
Synchronization 54

Monitors

Condition variables are derived fromonitors. A monitor is a programming
language construct that provides synchronized access to shared data. Monitor
have appeared in many languages, e.g., Ada, Mesa, Java.

a monitor is essentially an object with special concurrency semantics

it is an object, meaning
— it has data elements

— the data elements are encapsulated by a set of methods, which are the only
functions that directly access the object’s data elements

only onemonitor method may be active at a time, i.e., the monitor methods
(together) form a critical section

— if two threads attempt to execute methods at the same time, one will be
blocked until the other finishes

e inside a monitor, condition variables can be declared and used
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Monitors in 0S/161

e The C language, in which OS/161 is written, does not support monitors.

e However, programming convention and OS/161 locks and condition variables
can be used to provide monitbke behavior for shared kernel data structures:
— define a C structure to implement the object’s data elements

— define a set of C functions to manipulate that structure (these are the objeci
“methods”)

— ensure that only those functions directly manipulate the structure
— create an OS/161 lock to enforce mutual exclusion

— ensure that each access method acquires the lock when it starts and releas
the lock when it finishes

— if desired, define one or more condition variables and use them within the
methods.
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Deadlocks

e Suppose there are two threads and two lotlks; kA andl ockB, both initially
unlocked.

e Suppose the following sequence of events occurs
1. Thread 1 doesock_acqui re(| ockA).
2. Thread 2 doebock_acqui re(l ockB).

3. Thread 1 doesock_acqui r e( | ockB) and blocks, becaudeockB is
held by thread 2.

4. Thread 2 doesock_acqui r e(| ockA) and blocks, becaudeockAis
held by thread 1.

These two threads adeadlocked neither thread can make progress. Wait-
ing will not resolve the deadlock. The threads are permanently stuck.
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Deadlocks (Another Simple Example)

e Suppose a machine h&d MB of memory. The following sequence of events
occurs.

1. ThreadA starts, request¥) MB of memory.
2. ThreadB starts, also request® MB of memory.

3. ThreadA requests an addition&8IMB of memory. The kernel blocks thread
A since there is only MB of available memory.

4. ThreadB requests an additionalMB of memory. The kernel blocks thread
B since there is not enough memory available.

These two threads are deadlocked.
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Resource Allocation Graph (Example)

R1 R2 R3
T1 @ T3
resource requeéx\ /r’esource allocation

R4 R5

Is there a deadlock in this system?
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Resource Allocation Graph (Another Example)

R1 R3

o eee o
e

T1 T2 T3

\ /
e || 4

R4 R5

Is there a deadlock in this system?
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Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has
resources allocated to it. A thread may hold several resources, but to do so it
must make a single request for all of them.

Preemption: take resources away from a thread and give them to another (usually
not possible). Thread is restarted when it can acquire all the resources it need;

Resource Ordering: Order (e.g., number) the resource types, and require that eact
thread acquire resources in increasing resource type order. That is, a thread
make no requests for resources of type less than or equélitas holding
resources of typé
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Deadlock Detection and Recovery

e main idea: the system maintains the resource allocation graph and tests it to
determine whether there is a deadlock. If there is, the system must recover fro
the deadlock situation.

e deadlock recovery is usually accomplished by terminating one or more of the
threads involved in the deadlock

¢ when to test for deadlocks? Can test on every blocked resource request, or ca
simply test periodically. Deadlocks persist, so periodic detection will not
“miss” them.

Deadlock detection and deadlock recovery are both costlys djproach
makes sense only if deadlocks are expected to be infrequent.
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Detecting Deadlock in a Resource Allocation Graph

e System State Notation:
— D,: demand vector for thredf;
— A;: current allocation vector for thread

— U: unallocated (available) resource vector

¢ Additional Algorithm Notation:
— R: scratch resource vector
— f;: algorithm is finished with thread;? (boolean)

CS350 Operating Systems Fall 2013




Synchronization 63

Detecting Deadlock (cont’d)

[+ initialization */
R = U
for all 4, f;,= false
[+ can each thread finish? */
while 3 (- fi A (Di < R)){
R = R + A
fi = true
}
[+ if not, there is a deadl ock =*/
if 3¢ (- f; ) then report deadl ock
el se report no deadl ock
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Deadlock Detection, Positive Example

R3

=(0,1,0,0,0 R

Dl—( ) R2

Ds = (0,0,0,0,1) o athe oo
e D3 =(0,1,0,0,0) x \l \

Ay = ( )

Ay = ( )

Az = ( )

° =(1,0,0,0,0 T1 T3
° =(0,2,0,0,0 resource reques /’esource allocation
0,1,1,0,1
* ® °
e U=(0,0,1,1,0)
R4 R5
The deadlock detection algorithm will terminate with== f, == f3 ==
f al se, so this system is deadlocked.
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Deadlock Detection, Negative Example

R1 R3

= (0,1,0,0,0

R2
Dy = (
Dy = (1,0,0,0,0 ﬂ Q ? ’
e D3y =(0,0,0,0,0 \ \i /
Ay = (
Ay = (
(

)
)
)
= (1,0,0,1,0) T1 T2 T3
)
)

=(0,2,1,0,0
As = (0,1,1,0,1
U: (070707070)

\ /
o || 4

R4 R5

This system is not in deadlock. It is possible that the threaidlsrun to
completion in the orders, Ty, Ts.
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What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of
e anaddress spacavhich represents the memory that holds the program’s
code and data
e athreadof execution (possibly several threads)
e other resources associated with the running program. For example:
— open files

— sockets
— attributes, such as a name (process identifier)

A process with one thread issaquentialprocess. A process with more than
one thread is aoncurrentprocess.
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Multiprogramming

e multiprogramming means having multiple processes existing at the same time
e most modern, general purpose operating systems support multiprogramming

¢ all processes share the available hardware resources, with the sharing
coordinated by the operating system:

— Each process uses some of the available memory to hold its address space
The OS decides which memory and how much memory each process gets

— OS can coordinate shared access to devices (keyboards, disks), since
processes use these devices indirectly, by making system calls.

— Processeimesharethe processor(s). Again, timesharing is controlled by
the operating system.

e OS ensures that processes are isolated from one another. Interprocess
communication should be possible, but only at the explicit request of the
processes involved.
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The OS Kernel

e The kernel is a program. It has code and data like any other program.

e Usually kernel code runs in a privileged execution mode, while other programs

do not
CS350 Operating Systems Fall 2013
Processes and the Kernel 4
An Application and the Kernel
application kernel
stack || data || code memory data code

‘\ thread library

CPU registers
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Kernel Privilege, Kernel Protection

What does it mean to run in privileged mode?

Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

privileges vary from platform to platform, but may include:

— ability to execute special instructions (likal t)

— ability to manipulate processor state (like execution mode)

— ability to access memory addresses that can't be accessed otherwise
kernel ensures that it isolatedfrom processes. No process can execute or

change kernel code, or read or write kernel data, except through controlled
mechanisms like system calls.
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System Calls

System calls are an interface between processes and the kernel.
A process uses system calls to request operating system services.

From point of view of the process, these services are used to manipulate the
abstractions that are part of its execution environment. For example, a process
might use a system call to

— open afile
— send a message over a pipe
— create another process

— increase the size of its address space
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How System Calls Work

e The hardware provides a mechanism that a running program can use to cause
system call. Often, itis a special instruction, e.g., the MégScal |
instruction.

e What happens on a system call:

— the processor is switched to system (privileged) execution mode

— key parts of the current thread context, such as the program counter, are
saved

— the program counter is set to a fixed (determined by the hardware) memory
address, which is within the kernel’s address space

CS350 Operating Systems Fall 2013
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System Call Execution and Return

e Once a system call occurs, the calling thread will be executing a system call
handler, which is part of the kernel, in privileged mode.

e The kernel's handler determines which service the calling process wanted, anc
performs that service.
e When the kernel is finished, it returns from the system call. This means:

— restore the key parts of the thread context that were saved when the systen
call was made

— switch the processor back to unprivileged (user) execution mode

e Now the thread is executing the calling process’ program again, picking up
where it left off when it made the system call.

A system call causes a thread to stop executing applicatide aod to start
executing kernel code in privileged mode. The system call return switches
the thread back to executing application code in unprivileged mode.
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0S/161cl ose System Call Description

Library: standard C library (libc)

Synopsis:

#i ncl ude <uni std. h>

i nt

close(int fd);

Description: The file handld d is closed.. . .

Return Values: On success;| ose returns 0. On errorl is returned anér r no
is set according to the error encountered.

Errors:

EBADF: f d is not a valid file handle
EIO: A hard I/O error occurred
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An Example System Call: A Tiny OS/161 Application that Uses| ose

/* Program user/uwtestbin/syscall.c =/
#i ncl ude <uni std. h>
#i ncl ude <errno. h>

i nt
mai n()
{
int Xx;
x = cl ose(999);
if (x <0) {
return errno;

}

return Xx;

CS350 Operating Systems Fall 2013
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Disassembly listing of user/uw-testbin/syscall

00400050 <mai n>:
400050: 27bdffe8 addiu sp,sp,-24
400054: afbf0010 sw ra, 16(sp)
400058: 0c100077 jal 4001dc <cl ose>
40005c: 240403e7 1i a0, 999
400060: 04410003 bgez vO0, 400070 <mai n+0x20>
400064: 00000000 nop
400068: 3c021000 lui vO,0x1000
40006c: 8c420000 |w vO,0(v0)
400070: 8fbf0010 Iw ra, 16(sp)
400074: 00000000 nop
400078: 03e00008 jr ra
40007c: 27bd0018 addiu sp, sp, 24

The above can be obtained by disassembling the compiyatal | exe
cutable file withcs350- obj dunp -d
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System Call Wrapper Functions from the Standard Library

004001dc <cl ose>:
4001dc: 08100030 | 4000c0 <_ syscall >
4001e0: 24020031 i v0, 49

004001e4 <read>:
4001e4: 08100030 | 4000c0 <__syscall>
4001e8: 24020032 1i v0,50

The above is disassembled code from the standard C librég),(livhich is
linked withuser / uwt est bi n/ syscal | . o.

CS350 Operating Systems Fall 2013
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0S/161 MIPS System Call Conventions

e When thesyscal | instruction occurs:
— An integer system call code should be located in register R2 (vO)

— Any system call arguments should be located in registers R4 (a0), R5 (al),
R6 (a2), and R7 (a3), much like procedure call arguments.

e When the system call returns

— register R7 (a3) will contain a 0 if the system call succeeded, or a 1 if the
system call failed

— register R2 (v0) will contain the system call return value if the system call
succeeded, or an error number (errno) if the system call failed.

CS350 Operating Systems Fall 2013

57



Processes and the Kernel 15

0S/161 System Call Code Definitions

[+ Contains a nunber for every nore-or-less standard =*/

[+ Unix systemcall (you will inplenment sone subset). =*/
#defi ne SYS cl ose 49
#defi ne SYS read 50
#define SYS pread 51
/| #define SYS readv 52 [/* won't be inplenmenting */
/| #define SYS_preadv 53 /* won't be inplenenting */
#define SYS getdirentry 54
#define SYS wite 55

This comes fromkern/i ncl ude/ kern/ syscal |l . h. The files in
ker n/ i ncl ude/ ker n define things (like system call codes) that must be
known by both the kernel and applications.
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Processes and the Kernel 16

The OS/161 System Call and Return Processing

004000c0 <__syscal |l >:
4000c0: 0000000c syscal
4000c4: 10e00005 beqgz a3,4000dc <__syscal | +Ox1c>
4000c8: 00000000 nop
4000cc: 3c011000 |[|ui at, 0x1000
4000d0: ac220000 sw vO0,O0(at)
4000d4: 2403ffff 1i vi1,-1
4000d8: 2402ffff |i vO,-1
4000dc: 03e00008 jr ra
4000e0: 00000000 nop

The system call and return processing, from the standardr&rjibLike the
rest of the library, this is unprivileged, uskewel code.
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0S/161 MIPS Exception Handler

conmon_except i on:
nfcO kO, cO status /* Get status register =/
andi kO, kO, CST_KUp /=* Check the we-were-in-user-node bit =*/
beq kO, $0, 1f /+ If clear, fromkernel, already have stack =/
/= 1f is branch forward to | abel 1: =/
nop /+= delay slot =*/

[+ Coming fromuser node - find kernel stack =/
nfcO k1, cO_context /+ we keep the CPU nunber here =*/
srl k1, k1, CTX PTBASESH FT /* shift to get the CPU nunber =/

sl k1, k1, 2 [+ shift back to nake array index =*/
lui kO, %i (cpustacks) /+ get base address of cpustacks[] =/
addu kO, kO, k1 [+ index it =/

nove k1, sp /= Save previous stack pointer =*/

b 2f /* Skip to conmon code */

| wsp, %o(cpustacks)(k0) /+ Load kernel sp (in delay slot) =*/

CS350 Operating Systems Fall 2013
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0S/161 MIPS Exception Handler

[+ Coming fromkernel node - just save previous stuff =*/
nove k1, sp |+ Save previous stack in k1 (delay slot) =/

[+ At this point:
* Interrupts are off. (The processor did this for us.)
* kO contains the value for curthread, to go into s7.
* k1 contains the old stack pointer.
* sp points into the kernel stack

Al'l other registers are untouched.

*

*/

When the syscal | instruction occurs, the MIPS transfers control to- ad
dress 0x80000080. This kernel exception handler lives there. See
kern/ arch/ m ps/ | ocore/ exception-nmpsl. S
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0S/161 User and Kernel Thread Stacks

application kernel

stack || data code memory stack

- o = o = = === =

thread library

CPU registers

Each OS/161 thread has two stacks, one that is used whilergtis ex
ecuting unprivileged application code, and another that is used while the
thread is executing privileged kernel code.
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0S/161 MIPS Exception Handler (cont’d)

Thecomon_except i on code then does the following:

1. allocates drap frameon the thread’s kernel stack and saves the user-level
application’s complete processor state (all registers except kO and k1) into the
trap frame.

2. calls them ps_t r ap function to continue processing the exception.

3. whenmi ps_t r ap returns, restores the application processor state from the tra
frame to the registers

4. issues MIP$ r andr f e (restore from exception) instructions to return control
to the application code. The instruction takes control back to the location
specified by the application program counter whensthecal | occurred (i.e.,
exception PC) and thef e (which happens in the delay slot of the) restores
the processor to unprivileged mode
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0S/161 Trap Frame

application kernel

stack || data code memory stack

/

I EE trap frame with saved

application state

thread library

CPU registers

While the kernel handles the system call, the applicatio8Gtate is saved
in a trap frame on the thread’s kernel stack, and the CPU registers are avall
able to hold kernel execution state.
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m ps_t rap: Handling System Calls, Exceptions, and Interrupts

e On the MIPS, the same exception handler is invoked to handle system calls,
exceptions and interrupts

e The hardware sets a code to indicate the reason (system call, exception, or
interrupt) that the exception handler has been invoked

e 0S/161 has a handler function corresponding to each of these reasons. The
m ps_t r ap function tests the reason code and calls the appropriate function:
the system call handlesyscal | ) in the case of a system call.

e M ps_trap can be found irker n/ arch/ m ps/ | ocore/trap. c.

Interrupts and exceptions will be presented shortly
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0S/161 System Call Handler

syscal |l (struct trapframe tf)
{ <callno =tf->tf_v0; retval = 0;
switch (callno) {
case SYS reboot:
err = sys_reboot (tf->tf_a0);
br eak;
case SYS__ _tinme:
err = sys___time((userptr_t)tf->tf_a0,
(userptr_t)tf->tf_al);
br eak;

[+ Add stuff here x/

defaul t:
kprintf("Unknown syscall %\ n", callno);
err = ENOSYS;
br eak;

}

syscal | checks system call code and invokes a handler for the indicated
system call. Seker n/ arch/ m ps/ syscal | / syscall.c
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0S/161 MIPS System Call Return Handling

if (err) {

tf->tf_v0 = err;

tf->tf_a3 = 1; /+ signal an error =x/
} else {

[+ Success. */

tf->tf_v0 = retval

tf->tf_a3 = 0; /* signal no error =/
}

/= Advance the PC, to avoid the syscall again. x/
tf->tf_epc += 4;

/= Make sure the syscall code didn't forget to | ower spl =/
KASSERT( curt hread->t _curspl == 0);

[+ ...or leak any spinlocks */

KASSERT( curt hread->t _i pl hi gh_count == 0);

syscal | must ensure that the kernel adheres to the system call return con
vention.
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Exceptions

e Exceptions are another way that control is transferred from a process to the
kernel.

e Exceptions are conditions that occur during the execution of an instruction by &
process. For example, arithmetic overflows, illegal instructions, or page faults
(to be discussed later).

e Exceptions are detected by the hardware.

e When an exception is detected, the hardware transfers control to a specific
address.

e Normally, a kernel exception handler is located at that address.

Exception handling is similar to, but not identical to, systeall handling.
(What is different?)
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MIPS Exceptions

EX | RQ 0 [+ Interrupt =x/

EX_MOD 1 [+ TLB Modify (wite to read-only page) =/
EX TLBL 2 [+ TLB miss on |oad */

EX TLBS 3 [+ TLB miss on store */

EX _ADEL 4 [+ Address error on |oad */

EX ADES 5 [+ Address error on store x/

EX | BE 6 [+ Bus error on instruction fetch */
EX DBE 7 [+ Bus error on data |load *or* store =/
EX_SYS 8 [+ Syscall =*/

EX_BP 9 /= Breakpoi nt =/

EX_RI 10 /* Reserved (illegal) instruction x/
EX_CPU 11 /= Coprocessor unusable */

EX _OVF 12 [+ Arithnmetic overflow x/

In OS/161,m ps_trap uses these codes to decide whether it has been in
voked because of an interrupt, a system call, or an exception.

CS350 Operating Systems Fall 2013




Processes and the Kernel 27

Interrupts (Revisited)

¢ Interrupts are a third mechanism by which control may be transferred to the
kernel

e Interrupts are similar to exceptions. However, they are caused by hardware
devices, not by the execution of a program. For example:
— a network interface may generate an interrupt when a network packet arrive

— adisk controller may generate an interrupt to indicate that it has finished
writing data to the disk

— atimer may generate an interrupt to indicate that time has passed

¢ Interrupt handling is similar to exception handlingurrent execution context is
saved, and control is transferred to a kernel interrupt handler at a fixed address
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Interrupts, Exceptions, and System Calls: Summary

e interrupts, exceptions and system calls are three mechanisms by which contro
is transferred from an application program to the kernel

e when these events occur, the hardware switches the CPU into privileged mode
and transfers control to a predefined location, at which a kévaedilershould
be located

e the handler saves the application thread context so that the kernel code can be
executed on the CPU, and restores the application thread context just before
control is returned to the application
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Implementation of Processes

e The kernel maintains information about all of the processes in the system in a
data structure often called the process table.
e Perprocess information may include:
— process identifier and owner
— the address space for the process
— threads belonging to the process
— lists of resources allocated to the process, such as open files

— accounting information
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0S/161 Process

/* From kern/include/proc.h «/

struct proc {
char *p_nanme; /* Nane of this process =/
struct spinlock p_lock; /+ Lock for this structure */
struct threadarray p_threads; /* Threads in process =*/

struct addrspace *p_addrspace; /* virtual address space =*/
struct vnode *p_cwd; /* current working directory =/

/* add nore naterial here as needed =/
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0S/161 Process

/* From kern/include/proc.h «/
|+ Create a fresh process for use by runprogram() =*/
struct proc *proc_create_runprogranconst char *nane);

|+ Destroy a process =/
voi d proc_destroy(struct proc *proc);

/+ Attach a thread to a process x/
/* Must not already have a process */
i nt proc_addthread(struct proc *proc, struct thread *t);

/+ Detach a thread fromits process =/
void proc_renthread(struct thread *t);
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Implementing Timesharing
e whenever a system call, exception, or interrupt occurs, control is transferred
from the running program to the kernel

e at these points, the kernel has the ability to cause a context switch from the
running process’ thread to another process’ thread

e notice that these context switches always occur while a process’ thread is
executing kernel code

By switching from one process’s thread to another procesezad, the ker
nel timeshares the processor among multiple processes.
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Two Processes in 0S/161
application #1 kernel application #2
stack | data code stack stack stack || data code
trap frame for app #1 thread library
| | | | | | saved kernel thread
context for thread #1
CPU registers
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Timesharing Example (Part 1)
Process A Kernel Process B
; B’s thread is
| system call ready, not running
| or e.xceptlon C L
,__[___Orinterrupt | -
M- return
! T o _______ __
e :
- |
I~ A's thread is v
) ready, not running
context switch
Kernel switches execution context to Process B.
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Timesharing Example (Part 2)
Process A Process B
|
|
|
|
|
|
L
,,,,,,,,,,,,,, - - -
1
oh system call |
context switc or exception |
or interrupt |
| return <« Bsthreadis
| ready, not running
\/
Kernel switches execution context back to process A.
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Implementing Preemption

¢ the kernel uses interrupts from the system timer to measure the passage of tim
and to determine whether the running process’s quantum has expired.

e atimer interrupt (like any other interrupt) transfers control from the running
program to the kernel.

e this gives the kernel the opportunity to preempt the running thread and dispatc
anew one.
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Preemptive Multiprogramming Example

Process A Kernel Process B

| timer interrupt
|

Rl il T Key:

| S Y LY ready thread
******** running threac

context N .
switches : |
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System Calls for Process Management

Linux 0s/161
Creation fork,execv fork,execv
Destruction _exit,kill _exit
Synchronization wait,waitpid,pause,.. waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage,.| getpid
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The fork, _exit, getpid and waitpid system calls

mai n()
{
rc = fork(); /* returns O to child, pid to parent =*/
if (rc == 0) {
ny_pid = getpid();
x = child_code();
_exit(x);
} else {
child_pid = rc;
par ent _code();
child exit = waitpid(child_pid);
parent _pid = getpid();
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The execv system call
int main()
int rc = 0;

char xargs[4];

args[0] = (char ) "/testhbin/argtest";
args[1] = (char ) "first";

args[2] = (char x) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);
printf("If you see this execv failed\n");
printf("rc = %l errno = %d\n", rc, errno);
exit(0);
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The Process Model

e Although the general operations supported by the process interface are
straightforward, there are some less obvious aspects of process behaviour tha
must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?
What is in the address space? What is the initial thread context? Does it
have any other resources?

Multithreading: Are concurrent processes supported, or is each process
limited to a single thread?

Inter-Process Relationships: Are there relationships among processes, e.g,
parent/child? If so, what do these relationships mean?
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Virtual and Physical Addresses

Physical addresses are provided directly by the machine.

— one physical address space per machine

— the size of a physical address determines the maximum amount of
addressable physical memory

Virtual addresses (or logical addresses) are addresses provided by the OS to
processes.

— one virtual address spaper process

Programs use virtual addresses. As a program runs, the hardware (with help
from the operating system) converts each virtual address to a physical address

The conversion of a virtual address to a physical address is cdiéss
translation

On the MIPS, virtual addresses and physical addresse &ies long. This
limits the size of virtual and physical address spaces.
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Simple Address Translation: Dynamic Relocation

e hardware provides memory management umvhich includes aelocation
register

e at runtime, the contents of the relocation register are added to each virtual
address to determine the corresponding physical address

e the OS maintains a separate relocation register value for each process, and
ensures that relocation register is reset on each context switch

e Properties

— each virtual address space corresponds to a contiguous range of physical
addresses

— OS must allocate/deallocate variable-sized chunks of physical memory

— potential forexternal fragmentationf physical memory: wasted,
unallocated space
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Dynamic Relocation: Address Space Diagram

Proc 1 virtual address space physical memory
0 S 0
- A
max1 R
0 e
s A + maxl
C
max2
Proc 2

virtual address space

C + max2
m
2 -1
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Dynamic Relocation Mechanism
virtual address physical address
—~— v bits—= ~— m bits —
l | l |
A
—®
[
—~<— m bits —>
relocation
register
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Address Translation: Paging

e Each virtual address space is divided into fis@ze chunks callefages

e The physical address space is divided ifntones. Frame size matches page
size.

e OS maintains @age tabldor each process. Page table specifies the frame in
which each of the process’s pages is located.

e Atrun time, MMU translates virtual addresses to physical using the page table
of the running process.

e Properties
— simple physical memory management

— potential forinternal fragmentatiorof physical memory: wasted, allocated
space

— virtual address space need not be physically contiguous in physical space
after translation.
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Address Space Diagram for Paging

Proc 1 virtual address space physical memory
0
0

max1

: _—

max2  ,‘

Proc 2
virtual address space

CS350 Operating Systems Fall 2013

74



Virtual Memory 7

Paging Mechanism

virtual address physical address
—~—— v bits—> ~— m bits ——
‘ page # ‘ offset ‘ ‘ frame # ‘ offset
A A
S -

—~<— mbits —>
page table base

register
frame #
protection and page table
other flags
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Memory Protection

e during address translation, the MMU checks to ensure that the process uses
only valid virtual addresses
— typically, each PTE contains\alid bit which indicates whether that PTE
contains a valid page mapping
— the MMU may also check that the virtual page number does not index a PTE
beyond the end of the page table

e the MMU may also enforce other protection rules
— typically, each PTE containsraad-onlybit that indicates whether the
corresponding page may be modified by the process

e if a process attempts to violated these protection rules, the MMU raises an
exception, which is handled by the kernel

The kernel controls which pages are valid and which are predday setting
the contents of PTEs and/or MMU registers.
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Roles of the Kernel and the MMU (Summary)

e Kernel:

save/restore MMU state on context switches

create and manage page tables

manage (allocate/deallocate) physical memory
— handle exceptions raised by the MMU

e MMU (hardware):
— translate virtual addresses to physical addresses

— check for and raise exceptions when necessary

CS350 Operating Systems Fall 2013

Virtual Memory 10

Remaining Issues
translation speed: Address translation happens very frequently. (How frequently?)
It must be fast.

sparseness:Many programs will only need a small part of the available space for
their code and data.

the kernel: Each process has a virtual address space in which to run. What about
the kernel? In which address space does it run?
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Speed of Address Translation

e Execution of each machine instruction may involve one, two or more memory
operations

— one to fetch instruction
— one or more for instruction operands
e Address translation through a page table adds one extra memory operation (fg

page table entry lookup) for each memory operation performed during
instruction execution

— Simple address translation through a page table can cut instruction executic
rate in half.

— More complex translation schemes (e.g., mldtiel paging) are even more
expensive.
e Solution: include a Translation Lookaside Buffer (TLB) in the MMU
— TLB is a fast, fully associative address translation cache
— TLB hit avoids page table lookup
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TLB

e Each entry in the TLB contains a (page number, frame number) pair.

¢ If address translation can be accomplished using a TLB entry, access to the
page table is avoided.

¢ Otherwise, translate through the page table, and add the resulting translation t
the TLB, replacing an existing entry if necessary. Insadware controlled
TLB, this is done by the MMU. In @oftware controlled’LB, it is done by the
kernel.

e TLB lookup is much faster than a memory access. TLB is an associative
memory - page numbers of all entries are checked simultaneously for a match
However, the TLB is typically small (typically hundreds, e.g. 128, or 256
entries).

¢ If the MMU cannot distinguish TLB entries from different address spaces, then
the kernel must clear or invalidate the TLB. (Why?)
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The MIPS R3000 TLB

e The MIPS has a softwateontrolled TLB that can hold 64 entries.

e Each TLB entry includes a virtual page number, a physical frame number, an
address space identifier (not used by OS/161), and several flags (valid,
read-only).

e OS/161 provides low-level functions for managing the TLB:

TLB _Write: modify a specified TLB entry

TLB _Random: modify a random TLB entry
TLB _Read: read a specified TLB entry

TLB _Probe: look for a page number in the TLB

¢ If the MMU cannot translate a virtual address using the TLB it raises an
exception, which must be handled by OS/161.

Seekern/arch/ m ps/include/tlb.h
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TLB Shootdown
¢ If one a processor changes the virtual-to-physical mapping of an address,
mappings of that address in other processors’ TLBs would no longer be valid.

e The changing processor tells the other processors to invalidate that mapping ir
their TLB.

e Thisis called a “TLB shootdown”. The processor is shooting down
(eliminating) entries in other TLBs that are no longer valid.

In OS/161 is it possible to have the same virtual addressdsiarmultiple
TLBs?

CS350 Operating Systems Fall 2013

78



Virtual Memory 15

What is in a Virtual Address Space?

0x00400000 - 0x00401a0c
text (program code) and read—only data

growth

A X \

0x10000000 - 0x101200b0  Stack
data high end of stack: Ox7fffffff

0x00000000 OXFFffff

This diagram illustrates the layout of the virtual addresedor the OS/161
test applicatioruser / t est bi n/ sort
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Handling Sparse Address Spaces: Sparse Page Tables

aaaaaaaaaaaaaaaaaa

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

e Consider the page table faser / t est bi n/ sort, assuming a 4 Kbyte page:

— need2!? page table entries (PTESs) to cover the bottom half of the virtual
address space.

— the text segment occupies 2 pages, the data segment occupies 289 pages,
and OS/161 sets the initial stack size to 12 pages

e The kernel will mark a PTE as invalid if its page is not mapped.

e A page table fouser/ t est bi n/ sort, has only303 valid PTEs (of2'?).

An attempt by a process to access an invalid page causes the fdigéh
erate an exception (known aspage faul} which must be handled by the
operating system.
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Segmentation

e Often, programs (likesor t ) need several virtual address segments, e.g, for

code, data, and stack.

e One way to support this is to tusegmentito first-class citizens, understood
by the application and directly supported by the OS and the MMU.

e Instead of providing a single virtual address space to each process, the OS
provides multiple virtual segments. Each segment is like a separate virtual

address space, with addresses that start at zero.

¢ With segmentation, a virtual address can be thought of as having two parts:

(segment ID, address within segment)

e Each segment:

— can grow (or shrink) independently of the other segments, up to some

maximum size

— has its own attributes, e.g, read-only protection
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Segmented Address Space Diagram
Proc 1 physical memory
0 0
segment 0 .
0
segment 1 -
0
segment 2 .
Proc 2
0
segment 0
m
2 -1
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Mechanism for Translating Segmented Addresses

physical address

—~— m bits —>

—~<— v bits—>
seg# | offset +

segment table

virtual address

|

—
—<— m bits —>
segment table base
register
length start
protection

This translation mechanism requires physically contigulagation of seg

ments.
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Combining Segmentation and Paging
Proc 1 physical memory
0 0
segment 0
0
segment 1 -
0
segment 2 .
Proc 2
0
segment 0
m
2 -1
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Combining Segmentation and Paging: Translation Mechanism

virtual address physical address
Vv bits —~<— m bits —>
‘ seg # ‘ page #‘ offset ‘ frame # | offset
segment table page table
T ’T 3

—— 1
—~<— m bits —>
segment table base
register
page table
length
protection
CS350 Operating Systems Fall 2013
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0OS/161 Address Spaces: dumbvm

e OS/161 starts with a very simple virtual memory implementation

e virtual address spaces are describe@yr space objects, which record the
mappings from virtual to physical addresses

struct addrspace {

#i f OPT_DUMBVM
vaddr _t as_vbasel; /* base virtual address of code segnent =/
paddr _t as_pbasel; /=* base physical address of code segnent =*/
size_t as_npagesl; /* size (in pages) of code segnment =/
vaddr _t as_vbase2; /* base virtual address of data segnment =/
paddr _t as_pbase2; /=* base physical address of data segnent =*/
size_t as_npages2; /* size (in pages) of data segnent =/
paddr _t as_stackpbase; /* base physical address of stack */

#el se
[+ Put stuff here for your VM system =/

#endi f

s

This amounts to a slightly generalized version of simple dyicaelocation,
with three bases rather than one.
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Address Translation Under dunbvm

the MIPS MMU tries to translate each virtual address using the entries in the
TLB

If there is no valid entry for the page the MMU is trying to translate, the MMU
generates a TLB fault (called audress exceptign

e Thevmf aul t function (se&ker n/ arch/ m ps/ vm dunbvm c) handles
this exception for the OS/161 kernel. It uses information from the current
processaddr space to construct and load a TLB entry for the page.

On return from exception, the MIPS retries the instruction that caused the page
fault. This time, it may succeed.

vmf aul t is not very sophisticated. If the TLB fills up, OS/161 will crash!

CS350 Operating Systems Fall 2013
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Shared Virtual Memory

virtual memory sharing allows parts of two or more address spaces to overlap

shared virtual memory is:

— a way to use physical memory more efficiently, e.g., one copy of a program
can be shared by several processes

— a mechanism for interprocess communication

sharing is accomplished by mapping virtual addresses from several processes
the same physical address

unit of sharing can be a page or a segment

CS350 Operating Systems Fall 2013
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Shared Pages Diagram

Proc 1 virtual address space physical memory
0 0
max1
0

max2  "

Proc 2
virtual address space

m
2 -1
CS350 Operating Systems Fall 2013
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Shared Segments Diagram
Proc 1 physical memory
0 0
segment 0
(shared) \
0
segment 1 -
0
segment 2 .
Proc 2
0
segment 0
segment 1
(shared) m
2 -1
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An Address Space for the Kernel

e Each process has its own address space. What about the kernel?

e Three possibilities:

Kernel in physical space: disable address translation in privileged system
execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address

translation (e.g., switch page tables) when moving between privileged and

unprivileged code

Kernel mapped into portion of address space oévery process. OS/161,
Linux, and other operating systems use this approach
— memory protection mechanism is used to isolate the kernel from
applications
— one advantage of this approach: application virtual addresses (e.g.,
system call parameters) are easy for the kernel to use
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The Kernel in Process’ Address Spaces

Kernel
(shared, protected)

[ T

! | ! |

L L
| |

| ! | — | !

i B B
| |

! | ! |

! I ! I

! | ! |

! I ! I

! | ! |

| |

Process 1 Process 2

Address Space Address Space

Attempts to access kernel code/data in user mode result inonygpnotee
tion exceptions, not invalid address exceptions.
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Address Translation on the MIPS R3000

2GB 2GB

<—— user space ——><+—— kernel space ——>

kuseg ksegO | ksegl kseg2
0.5GB | 0.5GB 1GB
A Lk ‘2‘
0xc0000000
TLB mapped 0xa0000000
0x00000000 0x80000000 Oxffffffff
unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and datetstes live
in ksegO, devices are accessed through ksegl, and kseg?2 is not used.
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Loading a Program into an Address Space

When the kernel creates a process to run a particular program, it must create &
address space for the process, and load the program’s code and data into that
address space

A program’s code and data is described inexecutable filewhich is created
when the program is compiled and linked

0S/161 (and some other operating systems) expect executable files to be in E
(Executable andl inking Format) format

The OS/16%kxecv system call ranitializes the address space of a process
#i ncl ude <unistd. h>

i nt

execv(const char *program char =*=*args)

Thepr ogr amparameter of thexecv system call should be the name of the
ELF executable file for the program that is to be loaded into the address space

CS350 Operating Systems Fall 2013
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ELF Files
e ELF files contain address space segment descriptions, which are useful to the
kernel when it is loading a new address space
e the ELF file identifies the (virtual) address of the program’s first instruction

¢ the ELF file also contains lots of other information (e.g., section descriptors,
symbol tables) that is useful to compilers, linkers, debuggers, loaders and othe
tools used to build programs

CS350 Operating Systems Fall 2013
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Address Space Segments in ELF Files

The ELF file contains a header describing the segments and segnagets.

Each ELF segment describes a contiguous region of the virtual address space

The header includes an entry for each segment which describes:
— the virtual address of the start of the segment
— the length of the segment in the virtual address space
— the location of the start of the segment image in the ELF file (if present)
— the length of the segment image in the ELF file (if present)

the image is an exact copy of the binary data that should be loaded into the
specified portion of the virtual address space

the image may be smaller than the address space segment, in which case the
of the address space segment is expected to befiletb

To initialize an address space, the kernel copies imagestfiergLF file to
the specifed portions of the virtual address space
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ELF Files and OS/161

e 0OS/161'sdunmbvmimplementation assumes that an ELF file contains two
segments:

— atext segmentontaining the program code and any reesdly data
— adata segmentontaining any other global program data

¢ the ELF file does not describe the stack (why not?)

e dunbvmcreates atack segmerior each process. Itis 12 pages long, ending at
virtual addres®x7fffff f f

Look atker n/ syscal | /| oadel f. c to see how OS/161 loads segments
from ELF files
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ELF Sections and Segments

¢ Inthe ELF file, a program’s code and data are grouped togethesectmns,
based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.Sbss: small uninitialized global data
¢ not all of these sections are present in every ELF file

e normally
— the. t ext and. r odat a sections together form the text segment

— the. dat a, . bss and. sbss sections together form the data segement

e space follocal program variables is allocated on the stack when the program
runs

CS350 Operating Systems Fall 2013
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Theuser/ uw-t est bi n/ segnent s. ¢ Example Program (1 of 2)

#i ncl ude <uni std. h>
#define N  (200)

int x = Oxdeadbeef;

int t1;

int t2;

int t3;

int array[4096];

char const =*str = "Hello World\n";
const int z = Oxabcddcba;

struct exanple {

i nt ypos;
i nt Xpos;
b
CS350 Operating Systems Fall 2013
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Theuser/ uw-t est bi n/ segnent s. ¢ Example Program (2 of 2)
i nt
mai n()
{

int count = O;

const int value = 1,
tl1 = N,

t2 = 2;

count = x + t1;

t2 =z + t2 + val ue;

r eboot ( RB_POWNERCFF) ;
return 0; /* avoid conpiler warnings x/
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Section Headers:

[Nr] Nare

[ O]

[ 1] .text

[ 2] .rodata
[ 3] .reginfo
[ 4] .data

[ 5] .sbss

[ 6] .bss

Type
NULL
PRO&BI TS
PRO&BI TS

M PS_REG NFO

PROGBI TS
NOBI TS
NCBI TS

Addr

00000000
00400000
00400200
00400220
10000000
10000010
10000030

ELF Sections for the Example Program

O f

000000
010000
010200
010220
020000
020010
020010

Si ze

000000
000200
000020
000018
000010
000014
004000

s35,,% &

ﬁiégs: W(wite), A (alloc), X (execute), p (processor specific)

## Size =
## OFf = offset
## Addr = virtua

nunber of bytes (e.g.

. text

into the ELF file

addr ess

is 0x200 = 512 bytes

Thecs350-readel f program can be used to inspect OS/161 MIPS ELF

files: cs350-r eadel f

-a segnents
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ELF Segments for the Example Program

Pr ogr am Header s:

Type O fset Vi rt Addr PhysAddr FileSiz MenSiz Flg Align

REG NFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R  0Ox4

LOCAD
LOAD

program

the REGINFO section is not used

the first LOAD segment includes the .text and .rodata sections
the second LOAD segment includes .data, .sbss, and .bss

0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000
0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

segment info, like section info, can be inspected usingg®@50- r eadel f

CS350
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Contents of the Example Program’s. t ext Section

Contents of section .text:
400000 3c1c1001 279c8000 2408fff8 03a8e824 <...'...$...... $

## Decodi ng 3c1c1001 to determ ne instruction

## 0x3c1lc1001 = binary 111100000111000001000000000001
## 0011 1100 0001 1100 0001 0000 0000 0001

## instr | rs | rt | i medi ate

## 6 bits | 5 bits| 5 bits| 16 bits

## 001111 | 00000 | 11100 | 0001 0000 0000 0001

## LUl | O | reg 28| 0x1001

## LU | unused| reg 28| 0x1001

## Load upper inmrediate into rt (register target)

## lui gp, 0x1001

Thecs350- obj dunp program can be used to inspect OS/161 MIPS ELF
file section contentcs350- obj dunp -s segnents

CS350 Operating Systems Fall 2013
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Contents of the Example Program’s. r odat a Section

Contents of section .rodata:
400200 abcddcba 00000000 00000000 00000000 ................
400210 48656¢6¢c 6f20576f 726c640a 00000000 Hello World.....

## const int z = Oxabcddcba

## |f conpiler doesn't prevent z frombeing witten,
#it then the hardware coul d.

## 0x48 = "H 0x65 = '€’ 0x0a = '\n" 0x00 ="'\0O’

The. r odat a section contains the “Hello World” string literal and the eon
stant integer variable.
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Contents of the Example Program’s. dat a Section

Contents of section .data:
10000000 deadbeef 00400210 00000000 00000000 ..... @.........

## Size = 0x10 bytes = 16 bytes (padding for alignnent)
## int x = deadbeef (4 bytes)

## char const xstr = "Hello Wrld\n"; (4 bytes)

## address of str = 0x10000004

## value stored in str = 0x00400210.

## NOTE: this is the address of the start

## of the string literal in the .rodata section

The. dat a section contains the initialized global variabgtsr andx.

CS350 Operating Systems Fall 2013
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Contents of the Example Program’s. bss and . sbss Sections

10000000

D x
10000004 D str
10000010 S t3 ## S indi cates sbss section
10000014 S t2
10000018 S t1
1000001c S errno
10000020 S __argv
10000030 B array ## B indi cates bss section
10004030 A _end
10008000 A _gp

Thet 1,t 2, andt 3 variables are in thesbss section. Thear r ay variable
isinthe. bss section. There are no values for these variables in the ELF file,
as they are uninitialized. Thes350- nmprogram can be used to inspect
symbols defined in ELF filexcs350- nm - n <fi |l enanme>, in this case
cs350-nm -n segnents.

CS350 Operating Systems Fall 2013
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System Call Interface for Virtual Memory Management

e much memory allocation is implicit, e.g.:
— allocation for address space of new process
— implicit stack growth on overflow
e OS may support explicit requests to grow/shrink address space, e.g.hiix
system call.
e shared virtual memory (simplified Solaris example):
Create: shm d = shnget (key, si ze)
Attach: vaddr = shmat (shm d, vaddr)
Detach: shndt (vaddr)
Delete: shntt | (shm d, | PC.RM D)

CS350 Operating Systems Fall 2013
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Exploiting Secondary Storage

Goals:
e Allow virtual address spaces that are larger than the physical address space.

¢ Allow greater multiprogramming levels by using less of the available (primary)
memory for each process.

Method:

e Allow pages (or segments) from the virtual address space to be stored in
secondary memory, as well as primary memory.

e Move pages (or segments) between secondary and primary memory so that th
are in primary memory when they are needed.

CS350 Operating Systems Fall 2013
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The Memory Hierarchy

BANDWIDTH (bytes/sec) SIZE (bytes)

L1 Caché 104
L2 Cach% 106

3 primary 9
10 memory 10

secondary
108 memory 1012

(disk)
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Large Virtual Address Spaces

Virtual memory allows for very large virtual address spaces, and very large
virtual address spaces require large page tables.

example:2*® byte virtual address spacgKbyte 22 byte) pagess byte page
table entries means
248

FQQ =237 bytes per page table

page tables for large address spaces may be very large, and
— they must be in memory, and

— they must be physically contiguous

some solutions:

— multi-level page tables - page the page tables

— inverted page tables

CS350 Operating Systems Fall 2013
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Two-Level Paging

virtual address (v bits) bl
L T T T
oo
page # ‘ page # ‘ offset‘ - 1f __ :1 frame # | offset
= TT T T
TIoCD physical address (m bits)

I
—~<— m bits ——> level 1 cToo
page table base page table ri N
register R
Lo
croZo
FLo—o
[
! !
level 2
page tables
CS350 Operating Systems Fall 2013
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Inverted Page Tables

e A normal page table maps virtual pages to physical frames. An inverted page
table maps physical frames to virtual pages.

e Other key differences between normal and inverted page tables:
— there is only one inverted page table, not one table per process
— entries in an inverted page table must include a process identifier

e An inverted page table only specifies the location of virtual pages that are

located in memory. Some other mechanism (e.g., regular page tables) must be
used to locate pages that are not in memory.
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Paging Policies

When to Page?:
Demand pagindprings pages into memory when they are used. Alternatively,
the OS can attempt to guess which pages will be usedpeaidtchthem.

What to Replace?:
Unless there are unused frames, one page must be replaced for each page th:
loaded into memory. Aeplacement policgpecifies how to determine which
page to replace.

Similar issues arise if (pure) segmentation is used, onlutiteof data trans-

fer is segments rather than pages. Since segments may vary in size, segmen-
tation also requires placement policywhich specifies where, in memory, a
newly-fetched segment should be placed.
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Global vs. Local Page Replacement

e When the system’s page reference string is generated by more than one proce
should the replacement policy take this into account?

Global Policy: A global policy is applied to all in-memory pages, regardless of
the process to which each one “belongs”. A page requested by process X
may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to
processes according to some memory allocation policy. A replacement
policy is then applied separately to each process’s allocated space. A page
requested by process X replaces another page that “belongs” to process X.
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Paging Mechanism
e A valid bit (V') in each page table entry is used to track which pages are in
(primary) memory, and which are not.
V' = 1: valid entry which can be used for translation
V = 0: invalid entry. If the MMU encounters an invalid page table entry, it
raises gpage faultexception.
e To handle a page fault exception, the operating system must:

— Determine which page table entry caused the exception. (In SYS/161, and
real MIPS processors, MMU puts the offending virtual address into a
register on the CPO eprocessor (register 8/cgaddr/BadVaddr). The kernel
can read that register.

— Ensure that that page is brought into memory.
On return from the exception handler, the instruction that resulted in the page
fault will be retried.

¢ If (pure) segmentation is being used, there will be a valid bit in each segment
table entry to indicate whether the segment is in memory.
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A Simple Replacement Policy: FIFO

¢ the FIFO policy: replace the page that has been in memory the longest

e athree-frame example:

Num|1|2|3|4|5[6|7]|8|9]10| 11|12
Refs|a|b|jc|d|a|b|jeja|b|c | d]| e
Frame 1| a aj/d|d|d|e|e|e| e]| e| e
Frame 2 b|blalala alc|c
Frame 3 ciclc|bl|b b|d|d
Fault?| x | X | X | X [ X | X | X X | X
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Optimal Page Replacement

e There is an optimal page replacement policy for demand paging.

e The OPT policy: replace the page that will not be referenced for the longest

time.

Num|1|2|3|4|5|6|7|8|9]10]| 11| 12

Refs|a|b|c|d|a|b|le|ja|lb|] c | d e
Framella|a|alalalalalala| ¢ c c
Frame 2 b|b|b|b|b|b|b]| Db d d
Frame 3 cld|d|d|e|e|e]| e e e

Fault?| x | x | x | x X X X
e OPT requires knowledge of the future.
CS350 Operating Systems Fall 2013
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Other Replacement Policies

e FIFO is simple, but it does not consider:

Frequency of Use: how often a page has been used?

Recency of Use:when was a page last used?

Cleanliness: has the page been changed while it is in memory?

e Theprinciple of localitysuggests that usage ought to be considered in a

replacement decision.

e Cleanliness may be worth considering for performance reasons.
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Locality
e Locality is a property of the page reference string. In other words, itis a
property of programs themselves.

e Temporal localitysays that pages that have been used recently are likely to be
used again.

e Spatial localitysays that pages “close” to those that have been used are likely t
be used next.

In practice, page reference strings exhibit strong locaiitiry?
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Frequency-based Page Replacement

Counting references to pages can be used as the basis for page replacement
decisions.

Example: LFU (Least Frequently Used)
Replace the page with the smallest reference count.

Any frequencybased policy requires a reference counting mechanism, e.g.,
MMU increments a counter each time an in-memory page is referenced.

Pure frequency-based policies have several potential drawbacks:

— Old references are never forgotten. This can be addressed by periodically
reducing the reference count of every in-memory page.

— Freshly loaded pages have small reference counts and are likely victims -
ignores temporal locality.

CS350 Operating Systems Fall 2013
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Least Recently Used (LRU) Page Replacement

e LRU is based on the principle of temporal locality: replace the page that has n¢

been used for the longest time

e To implement LRU, it is necessary to track each page’s recency of use. For
example: maintain a list of tmemory pages, and move a page to the front of

the list when it is used.

e Although LRU and variants have many applications, LRU is often considered t(
be impractical for use as a replacement policy in virtual memory systems. Why

CS350 Operating Systems Fall 2013
Virtual Memory 58
Least Recently Used: LRU

¢ the same three-frame example:

Num|1|2|3|4|5|6|7|8]9|10| 11| 12
Refs|a|b|jc|d|a|b|le|ja|lb|] c|d e

Framel a|a|la|d|d|d|e|e|e]| c c c

Frame 2 b|b|blalalala|a|] a| d d

Frame 3 clclc|b|lb|b|b|b|b]|e

Fault?| x | X | X | X | X | X | X X | X | X
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The “Use” Bit

e A use bit(or reference bitis a bit found in each TLB entry that:

— is set by the MMU each time the page is used, i.e., each time the MMU
translates a virtual address on that page

— can be read and modified by the operating system
— operating system copies use information into page table

e The use bit provides a small amount of efficienthaintainable usage
information that can be exploited by a page replacement algorithm.

Entries in the MIPS TLB do not include a use bit.
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What if the MMU Does Not Provide a “Use” Bit?

¢ the kernel can emulate the “use” bit, at the cost of extra exceptions

1. When a page is loaded into memory, mark itraglid (even though it as
been loaded) and set its simulated “use” bit to false.
. If a program attempts to access the page, an exception will occur.

In its exception handler, the OS sets the page’s simulated “use” bit to “true”
and marks the pagelid so that further accesses do not cause exceptions.

e This technique requires that the OS maintain extra bits of information for each
page:

1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory

CS350 Operating Systems Fall 2013
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The Clock Replacement Algorithm

e The clock algorithm (also known as “second chance”) is one of the simplest
algorithms that exploits the use bit.

e Clock is identical to FIFO, except that a page is “skipped” if its use bit is set.

e The clock algorithm can be visualized as a victim pointer that cycles through
the page frames. The pointer moves whenever a replacement is necessary:

while use bit of victimis set

clear use bit of victim

victim= (victim+ 1) % numfranes
choose victimfor replacenent
victim= (victim+ 1) % numfranes
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Page Cleanliness: the “Modified” Bit

A page ismodified(sometimes called dirty) if it has been changed since it was
loaded into memory.

A modified page is more costly to replace than a clean page. (Why?)

The MMU identifies modified pages by settingredified bitin the TLB entry
when the contents of the page change.

Operating system clears the modified bit when it cleans the page

The modified bit potentially has two roles:
— Indicates which pages need to be cleaned.
— Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.
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What if the MMU Does Not Provide a “Modified” Bit?

e Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark iteed-only(even if it is
actually writeable) and set its simulated “modified” bit to false.

2. If a program attempts to modify the page, a protection exception will occur.

3. Inits exception handler, if the page is supposed to be writeable, the OS set
the page’s simulated “modified” bit to “true” and marks the page as
writeable.

e This technique requires that the OS maintain two extra bits of information for
each page:
1. the simulated “modified” bit
2. a“writeable” bit to indicate whether the page is supposed to be writeable
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Enhanced Second Chance Replacement Algorithm

e Classify pages according to their use and modified bits:
(0,0): not recently used, clean.
(0,1): not recently used, modified.
(1,0): recently used, clean
(1,2): recently used, modified

e Algorithm:
1. Sweep once looking for (0,0) page. Don't clear use bits while looking.

2. If none found, look for (0,1) page, this time clearing “use” bits for bypassed
frames.

3. If step 2 fails, all use bits will be zero, repeat from step 1
(guaranteed to find a page).

CS350 Operating Systems Fall 2013
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Page Cleaning

e A modified page must be cleaned before it can be replaced, otherwise change
on that page will be lost.

¢ Cleaninga page means copying the page to secondary storage.
¢ Cleaning is distinct from replacement.

e Page cleaning may ®ynchronou®r asynchronous:

synchronous cleaning: happens at the time the page is replaced, during page
fault handling. Page is first cleaned by copying it to secondary storage. The
a new page is brought in to replace it.
asynchronous cleaning:happens before a page is replaced, so that page fault
handling can be faster.
— asynchronous cleaning may be implemented by dedicatepa&
cleaning threadshat sweep through thedmemory pages cleaning
modified pages that they encounter.
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Belady’s Anomaly

e FIFO replacement, 4 frames

Num|1|2|3[4(5/6|7|8|9]10|11]| 12
Refs|a|b|jc|d|a|b|lela|b|c | d]| e
Frame 1| a alalalele|le|e|d|d
Frame 2 b|b|/b|bjaja| a| a| e
Frame 3 ciclclc|c|c|b| b|Db|b
Frame 4 d|d|{d|d|d|d| c|c]|cC
Fault? | x | x | x | X X[ X[ X]| X | X | X

e FIFO example on Slide 52 with same reference string had 3 frames and only 9
faults.

More memory does not necessarily mean fewer page faults.
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Stack Policies

Let B(m,t) represent the set of pages in the system witframes of memory,
at timet, under some given replacement policy, for some given reference string

A replacement policy is calledstack policyif, for all reference strings, ath
and allt:
B(m,t) C B(m+ 1,t)

If a replacement algorithm imposes a total order, independent of the number o
frames (i.e., memory size), on the pages and it replaces the largest (or smalles
page according to that order, then it satisfies the definition of a stack policy.

Examples: LRU is a stack algorithm. FIFO and CLOCK are not stack
algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.
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Prefetching

Prefetching means moving virtual pages into memory before they are needed,
I.e., before a page fault results.

The goal of prefetching igtency hiding do the work of bringing a page into
memory in advance, not while a process is waiting.

To prefetch, the operating system must guess which pages will be needed.

Hazards of prefetching:

— guessing wrong means the work that was done to prefetch the page was
wasted

— guessing wrong means that some other potentially useful page has been
replaced by a page that is not used

most common form of prefetching is simple sequential prefetching: if a process
uses page, prefetch page + 1.

sequential prefetching exploits spatial locality of reference
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Page Size

the virtual memory page size must be understood by both the kernel and the
MMU

some MMUs have support for a configurable page size

advantages of larger pages
— smaller page tables
— largerTLB footprint

— more efficient I/O

disadvantages of larger pages

— greater internal fragmentation

— increased chance of paging in unnecessary data

0S/161 on the MIPS uses a 4KB virtual memory page size.
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How Much Physical Memory Does a Process Need?

Principle of locality suggests that some portions of the process’s virtual addres
space are more likely to be referenced than others.

A refinement of this principle is thevorking set modebf process reference
behaviour.

According to the working set model, at any given time some portion of a
program’s address space will be heavily used and the remainder will not be.
The heavily used portion of the address space is calledtinking setf the
process.

The working set of a process may change over time.

Theresident sebf a process is the set of pages that are located in memory.

According to the working set model, if a process’s residenirsgudes its
working set, it will rarely page fault.

CS350 Operating Systems Fall 2013

106



Virtual Memory 71

Resident Set Sizes (Example)

PID VSZ RSS COVNMAND

805 13940 5956 /usr/ bi n/ gnome- sessi on
831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11
838 6964 2292 gnone- snpr oxy

840 14720 5008 gnone-setti ngs-daenon
848 8412 3888 sawfish

851 34980 7544 nautil us

853 19804 14208 gnone- panel

857 9656 2672 gpilotd

867 4608 1252 gnone- name- service
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Refining the Working Set Model

e DefineWW S(t, A) to be the set of pages referenced by a given process during th
time interval(t — A, t). WS(¢, A) is the working set of the process at tithe

e Define|WS(t,A)| to be the size otV S(t, A), i.e., the number ofiistinct
pages referenced by the process.

e If the operating system could tradk S(¢, A), it could:

— use|W S(t, A)| to determine the number of frames to allocate to the process
under a local page replacement policy

— useW S(t, A) directly to implement a workinget based page replacement
policy: any page that is no longer in the working set is a candidate for
replacement
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Page Fault Frequency

e A more direct way to allocate memory to processes is to measurgtgsr
fault frequencies the number of page faults they generate per unit time.

e If a process’s page fault frequency is too high, it needs more memory. Ifitis

low, it may be able to surrender memory.

e The working set model suggests that a page fault frequency plot should have &

sharp “knee”.
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A Page Fault Frequency Plot

high
page fault frequency curve
process
page fault
frequency
thresholds
low
few many
frames allocated to process
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Thrashing and Load Control

e What is a good multiprogramming level?
— If too low: resources are idle
— If too high: too few resources per process
e A system that is spending too much time paging is said tthizshing
Thrashing occurs when there are too many processes competing for the
available memory.
e Thrashing can be cured by load shedding, e.g.,
— Killing processes (not nice)
— Suspending angwapping ouprocesses (nicer)
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Swapping Out Processes

e Swapping a process out means removing all of its pages from memory, or
marking them so that they will be removed by the normal page replacement
process. Suspending a process ensures that it is not runnable while it is swapg
out.

e Which process(es) to suspend?

— low priority processes
— blocked processes
— large processes (lots of space freed) or small processes (easier to reload)

e There must also be a policy for making suspended processes ready when syst
load has decreased.
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The Nature of Program Executions

¢ A running thread can be modeled as alternating seri€af burstsandl/O
bursts

— during a CPU burst, a thread is executing instructions

— during an 1/O burst, a thread is waiting for an I/O operation to be performed
and is not executing instructions

CS350 Operating Systems Fall 2013
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Preemptive vs. Non-Preemptive

¢ A non-preemptivescheduler runs only when the running thread gives up the
processor through its own actions, e.g.,

— the thread terminates
— the thread blocks because of an 1/O or synchronization operation
— the thread performs a Yield system call (if one is provided by the operating
system)
e A preemptivescheduler may, in addition, force a running thread to stop running

— typically, a preemptive scheduler will be invoked periodically by a timer
interrupt handler, as well as in the circumstances listed above

— arunning thread that is preempted is moved to the ready state
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FCFS and Round-Robin Scheduling

First-Come, First-Served (FCFS):
e nonpreemptive - each thread runs until it blocks or terminates

e FIFO ready queue
Round-Robin:

e preemptive version of FCFS

e running thread is preempted after a fixed time quantum, if it has not already
blocked

e preempted thread goes to the end of the FIFO ready queue

CS350 Operating Systems Fall 2013
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Shortest Job First (SJF) Scheduling

non-preemptive

ready threads are scheduled according to the length of their next CPU burst -
thread with the shortest burst goes first

SJF minimizes average waiting time, but can lead to starvation

SJF requires knowledge of CPU burst lengths

— Simplest approach is to estimate next burst length of each thread based on
previous burst length(s). For example, exponential average considers all
previous burst lengths, but weights recent ones most heavily:

Bi+1 = ab; + (1 — Oé)BZ

whereB; is the predicted length of thith CPU burst, and; is its actual
length, and) < o < 1.

e Shortest Remaining Time First is a preemptive variant of SJF. Preemption may
occur when a new thread enters the ready queue.
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FCFS Gantt Chart Example

Pa—
Pb _

0 4 8 12 16

Initial ready queue: Pa=5 Pb=8 Pc

Thread Pd (=2) "arrives" at time 5

1 > time
20
=3
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Processor Scheduling

Round Robin Example

Pel =

Pal e

> time

0 4 8 12 16

20

Initial ready queue: Pa=5 Pb=8 Pc=3

Thread Pd (=2) "arrives" at time 5

Quantum =2
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SJF Example

Pa . —
Pb L —
P |—

Pl e

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=2) "arrives" at time 5

> time
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SRTF Example

P |—

pd| e

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=2) "arrives" at time 5
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Highest Response Ratio Next

e non-preemptive
e response ratio is defined for each ready thread as:

w+b

b
whereb is the estimated CPU burst time ands the actual waiting time

e scheduler chooses the thread with the highest response ratio (choose gmalles
in case of a tie)

e HRRN is an example of a heuristic that blends SJF and FCFS

CS350 Operating Systems Fall 2013
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HRRN Example

Pa
Pb I
Pc —
Pd

: : : f f f : f : : » time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=4) "arrives" at time 5
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Prioritization

ascheduler may be asked to take process or thread priorities into account

for example, priorities could be based on
— user classification
— application classification
— application specification
(e.g., Linuxset priority/ sched_set schedul er)

scheduler can:

— always choose higher priority threads over lower priority threads

— use any scheduling heuristic to schedule threads of equal priority

low priority threads risk starvation. If this is not desired, scheduler must have a
mechanism for elevating the priority of low priority threads that have waited a

long time
CS350 Operating Systems Fall 2013
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Multilevel Feedback Queues

e gives priority to interactive threads (those with short CPU bursts)
e scheduler maintains several ready queues

e scheduler never chooses a thread in ready quéubere are threads in any
ready queug < i.

e threads in ready queuaise quantuny;, andg; < g; if 1 < j
e newly ready threads go into ready quéue

e aleveli thread that is preempted goes into the level1 ready queue

CS350 Operating Systems Fall 2013

115




Processor Scheduling 13

3 Level Feedback Queue State Diagram

blocked

preempt

CS350 Operating Systems Fall 2013

Processor Scheduling 14

Suspending Processes
e suspension prevents a process from running for an extended period of time,
until the kernel decides t@sumeait.
¢ usually because a resource, especially memory, is overloaded
e kernel releases suspended process’s resources (e.g., memory)

e Operating system may also provide mechanisms for applications or users to
request suspension/resumption of processes
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Scheduling States Including Suspend/Resume

suspended/

suspend ready

resume suspend

guantum expires

running

dispatch

suspend

blocked

suspended/
blocked

resume
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Devices and Device Controllers

e network interface

e graphics adapter

e secondary storage (disks, SSD, flash) and storage controllers
e serial (e.g., mouse, keyboard)

e sound

® CO-processors

CS350 Operating Systems Fall 2013
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Bus Architecture Example

CPU Cache
N

PCI bus

SATA USB " .
controller controller Bridge Graphic
ISA bus
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Simplified Bus Architecture

oo () [ [« (]  pmemy
/N

disk controller other controllers
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Sys/161 LAMEbus Devices

e LAMEDbus controller

e timer/clock- current time, timer, beep

e disk drive - persistent storage

e serial console - character input/output

e text screen - character-oriented graphics

e network interface - packet input/output

e emulator file system - simulation-specific

e hardware trace control - simulation-specific

e random number generator

CS350 Operating Systems Fall 2013
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Device Interactions

e device registers
— command, status, and data registers
— CPU accesses register via:
x special I/0 instructions
% Mmemory mapping
e interrupts
— used by device for asynchronous notification (e.g., of request completion)
— handled by interrupt handlers in the operating system

CS350 Operating Systems Fall 2013

110 6

Example: LAMEDbus timer device registers

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restarton-expiry (auto-restart countdown?)
12 4 | status and command interrupt (reading clears)
16 4 | status and command countdown time (microseconds)
20 4 command speaker (causes beeps)

Sys/161 uses memory-mapping. Each device’s registers gpadanto the
physical address spaa# the MIPS processor.
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Example: LAMEbus disk controller

Offset | Size Type Description
0 4 status number of sectors
4 4 | status and command status
8 4 command sector number
12 4 status rotational speed (RPM
32768 | 512 data transfer buffer
CS350 Operating Systems

110

MIPS/OS161 Physical Address Space

0x00000000 W itiitiid
RAM
ROM: 0x1fc00000 - Ox1fdfffff
devices: 0x1fe00000 - Ox1fffffff
e 6 6 0 °
»

64 KB device "slot"

0x1fe00000 o YeRiitiiii

Each device is assigned to one of 32 64KB device “slots”. Ackgsiregis-

ters and data buffers are memory-mapped into its assigned slot.

CS350 Operating Systems
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Device Control Example: Controlling the Timer

/+* Registers (offsets within the device slot) =*/

#define LT_REGSEC 0 /= time of day: seconds =/

#define LT REGNSEC 4 /= time of day: nanoseconds */

#define LT REGROE 8 /* Restart On countdown-tinmer Expiry flag *
#define LT REGIRQ 12 /* Interrupt status register =/

#define LT _REG COUNT 16 /+ Time for countdown tiner (usec) =/
#define LT _REG SPKR 20 /* Beep control =/

[+ Get the nunber of seconds fromthe |anebus tiner */
[+ 1t->t _buspos is the slot nunber of the target device =*/
secs = bus read register(lt->It_bus, It->lt_buspos,

LT REG SEC);

[+ Get the tinmer to beep. Doesn’t natter what value is sent =*/
bus_wite_register(lt->t_bus, It->lt_buspos,
LT_REG SPKR, 440);
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Device Control Example: Address Calculations

/= LAMEbus mappi ng size per slot =*/

#define LB _SLOT_SI ZE 65536

#define M PS KSEGL 0xa0000000

#define LB _BASEADDR (M PS KSEGL + 0x1fe00000)

[+ Compute the virtual address of the specified offset =/

/* into the specified device slot x/

voi d *

| amebus_map_area(struct | anebus_softc *bus, int slot,
u_int32_t offset)

{
u_int32_t address;
(voi d) bus; /'l not needed
assert (sl ot>=0 && slot<LB NSLOTS);
address = LB BASEADDR + slot*LB SLOT_SI ZE + offset;
return (void =)address;
}
CS350 Operating Systems Fall 2013
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Device Control Example: Commanding the Device

/+ FROM kern/arch/ m ps/ m ps/| anebus_m ps.c */
/* Read 32-bit register froma LAMEbus device. */
u.int32_t
| anebus_read register(struct |anebus_softc =*bus,
int slot, u_int32_t offset)
{
u_int32_t *ptr = | amebus_map_area(bus, slot, offset);
return *ptr;

}

/[ Wite a 32-bit register of a LAVEbus device. =*/

voi d

| amebus_write regi ster(struct |anebus_softc =*bus,
int slot, u_int32_t offset, u_int32_t val)

{
uint32 t *ptr = | amebus_map_area(bus, slot, offset);
*ptr = val;
}
CS350 Operating Systems Fall 2013
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Device Data Transfer

e Sometimes, a device operation will involve a large chunk of dataich larger

than can be moved with a single instruction. Example: reading a block of data

from a disk.

e Devices may have data buffers for such data - but how to get the data between

the device and memory?

¢ If the data buffer is memory-mapped, the kernel can move the data iteratively,

one word at a time. This is callggtogram-controlled 1/0

e Program controlled 1/O is simple, but it means that the CPhlsy executing
kernel codavhile the data is being transferred.

e The alternative is called Direct Memory Access (DMA). During a DMA data

transfer, the CPU isot busyand is free to do something else, e.g., run an
application.

Sys/161 LAMEbus devices do program-controlled 1/O.
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Direct Memory Access (DMA)

e DMA is used for block data transfers between devices (e.g., a disk controller)
and memory

e Under DMA, the CPU initiates the data transfer and is notified when the transfe
is finished. However, the device (not the CPU) controls the transfer itself.

3

1 2

@) () (&) ()

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU
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Applications and Devices

e interaction with devices is normally accomplished by device drivers in the OS,
so that the OS can control how the devices are used

e applications see a simplified view of devices through a system call interface
(e.g., block vs. character devices in Unix)
— the OS may provide a system call interface that permits low level interactior
between application programs and a device
e operating system oftelouffersdata that is moving between devices and
application programs’ address spaces
— benefits: solve timing, size mismatch problems

— drawback: performance
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Logical View of a Disk Drive

disk is an array of numbered blocks (or sectors)

each block is the same size (e.g., 512 bytes)

blocks are the unit of transfer between the disk and memory

— typically, one or more contiguous blocks can be transferred in a single
operation

storage iswon-volatile i.e., data persists even when the device is without power
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A Disk Platter’'s Surface
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Physical Structure of a Disk Drive
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Simplified Cost Model for Disk Block Transfer

e moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder

rotational latency: wait until the desired sectors spin to the read/write heads
transfer time: wait while the desired sectors spin past the read/write heads

e request service time is the sum of seek time, rotational latency, and transfer tin

tservice = tseek + trot + ttransfer

e note that there are other overheads but they are typically small relative to thesg

three
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Rotational Latency and Transfer Time

¢ rotational latency depends on the rotational speed of the disk

o if the disk spins at rotations per second:

€|l

0 S trot S

e expected rotational latency:

ks

rot —

~~

2w

¢ transfer time depends on the rotational speed and on the amount of data
transferred

e if k sectors are to be transferred and therelasectors per track:
k

ttransfer = T—w
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Seek Time

¢ seek time depends on the speed of the arm on which the read/write heads are
mounted.
e asimple linear seek time model:

— tmazsecek 1S the time required to move the read/write heads from the
innermost cylinder to the outermost cylinder

— ('is the total number of cylinders

o if k is the requirecseek distancé: > 0):

k
tseek (k) = Etmamseek
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Performance Implications of Disk Characteristics

e larger transfers to/from a disk device anere efficienthan smaller ones. That
IS, the cost (time) per byte is smaller for larger transfers. (Why?)

e sequential I/O is faster than n@equential I/0
— sequential I/O operations eliminate the need for (most) seeks

— disks use other techniques, likack buffering to reduce the cost of
sequential I/O even more
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Disk Head Scheduling

goal: reduce seek times by controlling the order in which requests are serviced

disk head scheduling may be performed by the controller, by the operating
system, or both

for disk head scheduling to be effective, there must be a queue of outstanding
disk requests (otherwise there is nothing to reorder)

an on-line approach is required: the disk request queue is not static
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FCFS Disk Head Scheduling

¢ handle requests in the order in which they arrive

¢ fair and simple, but no optimization of seek times

50 100 150
AN AN AN AN AN AN AN AN AN AN AN
N N N N N N N N N N
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ > \ \
\ -<¢
\ T T T T T T T T -
i i i 1 1 i i i i i
| | | | | | |
| .J . | . . | | | . | D
) | ) | - X X X X X
! ! ! ! _‘ ! ! ! ! !
! ! ! ! ! ! ! ! ! !
/ / / / / / / / / /
head / / / / / / / / /
/ / / / / / / / / / /
/ / / / / / / / / /
/ / / / / / / / / /
/ / / / / / / / / /
/ / / / / / / / / /
/ / / / / / / / / /
7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/
53 6570 104
arrival order: 104183 37 14 65 70
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Shortest Seek Time First (SSTF)

e choose closest request (a greedy approach)

e seek times are reduced, but requests may starve

arrival order: 104 183 37 14 65 70
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SCAN and LOOK
e LOOK is the commonlymplemented variant of SCAN. Also known as the
“elevator” algorithm.

o Under LOOK, the disk head moves in one direction until there are no more
requests in front of it, then reverses direction.

e seek time reduction without starvation

e SCAN is like LOOK, except the read/write heads always move all the way to
the edge of the disk in each direction.
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SCAN Example

arrival order: 104 183 14 65 70
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Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK)

e C-LOOK and C-SCAN are variants of LOOK and SCAN

e Under C-LOOK, the disk head moves in one direction until there are no more

requests in front of it, then it jumps back and begins another scan in the same
direction as the first.

e C-LOOK avoids bias against “edge” cylinders

CS350 Operating Systems Fall 2013
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C-LOOK Example

arrival order: 104 183 14 65 70
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Files and File Systems

o files: persistent, named data objects

— data consists of a sequence of numbered bytes

— alternatively, a file may have some internal structure, e.g., a file may consis

of sequence of numbered records
— file may change size over time
— file has associated metkata (attributes), in addition to the file name
x examples: owner, access controls, file type, creation and access
timestamps
e file system: a collection of files which share a common name space

— allows files to be created, destroyed, renamed,

CS350 Operating Systems Fall 2013
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File Interface

open, close

— open returns a file identifier (or handle or descriptor), which is used in
subsequent operations to identify the file. (Why is this done?)

read, write

— must specify which file to read, which part of the file to read, and where to

put the data that has been read (similar for write).
— often, file position is implicit (why?)

e seek

get/set file attributes, e.g., Unfxst at, chnod
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File Read

fileoffset (implicit)
vaddr

i length

s

length

virtual address
space

file

read(filel D, vaddr, |ength)

CS350 Operating Systems Fall 2013
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File Position

°

may be associated with the file, with a process, or with a file descriptor (Unix
style)

read and write operations
— start from the current file position

— update the current file position

this makes sequential file I/O easy for an application to request

for nonsequential (random) file I/O, use:

— seek, to adjust file position before reading or writing

— a positioned read or write operation, e.g., Upixead, pwite:
pread(fileld,vaddr,|length,filePosition)
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Sequential File Reading Example (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDO\LY);
for(i=0; i<100; i++) {
read(f, (void =*)buf, 512);

}
cl ose(f);
Read the first 00 x 512 bytes of a file512 bytes at a time.
CS350 Operating Systems Fall 2013
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File Reading Example Using Seek (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDO\LY);
for(i=1; i<=100; i++) {
| seek(f, (100-i)*512, SEEK SET);
read(f, (void =*)buf, 512);

}
cl ose(f);

Read the first 00 x 512 bytes of a file512 bytes at a time, in reverse order.
CS350 Operating Systems Fall 2013
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File Reading Example Using Positioned Read

char buf[512];
int i;
int f = open("nyfile", O RDO\LY);
for(i=0; i<100; i+=2) {
pread(f, (void *)buf,512,i*512);

cl ose(f);

Read every seconil 2 byte chunk of a file, untib0 have been read.
CS350 Operating Systems Fall 2013
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Memory-Mapped Files

e generic interface:

vaddr < mmap(file descriptor,fileoffset,|ength)
munmap( vaddr, | engt h)

e mmap call returns the virtual address to which the file is mapped

e munmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.
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Memory Mapping lllustration

fileoffset
vaddr

- length

length -

virtual address file
space
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Memory Mapping Update Semantics

e what should happen if the virtual memory to which a file has been mapped is
updated?
e some options:
— prohibit updates (readnly mapping)
— eager propagation of the update to the file (too slow!)
— lazy propagation of the update to the file

x user may be able to request propagation (e.g., P@Skhhc()
* propagation may be guaranteedriynnmap()

— allow updates, but do not propagate them to the file
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Memory Mapping Concurrency Semantics

¢ what should happen if a memory mapped file is updated?
— by a process that has mmapped the same file

— by a process that is updating the file usingra t e() system call

e options are similar to those on the previous slide. Typically:

— propagate lazily: processes that have mapped thefigeventually see the
changes

— propagate eagerly: other processes will see the changes
x typically implemented by invalidating other process’s page table entries

CS350 Operating Systems Fall 2013
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File Names

e applicationvisible objects (e.g., files, directories) are given names
¢ the file system is responsible for associating names with objects
e the namespace is typically structured, often as a tree or a DAG

e namespace structure provides a way for users and applications to organize an
manage information

¢ in a structured namespace, objects may be identifigohllynames, which
describe a path from a root object to the object being identified, e.g.:

/ hone/ user/ cour ses/ cs350/ notes/ fil esys. pdf
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Hierarchical Namespace Example

Key
@ = directory
L] =file

CS350 Operating Systems Fall 2013
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Hard Links

¢ ahard link is an association between a name and an underlying file (or
directory)

e typically, when a file is created, a single link is created to the file as well (else
the file would be difficult to use!)

— POSIX examplecr eat ( pat hnane, node) creates both a new empty
file object and a link to that object (usiqgt hnane)

e some file systems allow additional hard links to be made to existing files. This
allows more than one name from the file system’s namespace to refsirtie
underlying object

— POSIX examplel i nk( ol dpat h, newpat h) creates a new hard link,
usingnewpat h, to the underlying object identified lp} dpat h

File systems ensumeferential integrityfor hard links. A hard link refers to
the object it was created for until the link is explicitly destroyed. (What are
the implications of this?)
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Symbolic Links

e aSymbolic link or soft link is an association between two names in the file
namespace. Think of it is a way of defining a synonym for a filename.

— sym i nk( ol dpat h, newpat h) creates a symbolic link fromewpat h
tool dpat h, i.e.,newpat h becomes a synonym fai dpat h.

e symbolic links relate filenames to filenames, while hard links relate filenames t
underlying file objects!

o referential integrity is1ot preserved for symbolic links, e.g., the system call
above can succeed even if there is no object nabhetpat h

CS350 Operating Systems Fall 2013
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UNIX/Linux Link Example (1 of 3)

%cat > filel

This is filel.

<cntl-d>

%ls -1li

685844 -rw------ 1 user group 15 2008-08-20 filel
%In filel Iinkl

%In -s filel syml

% I n not-here |ink2

In: not-here: No such file or directory

%In -s not-here syng

Files, hard links, and soft/symbolic links.
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UNIX/Linux Link Example (2 of 3)

%ls -1li
685844 -rw------ 2 user group 15 2008-08-20 filel
685844 -rw------ 2 user group 15 2008-08-20 |inkl

685845 | rwxrwxrwx 1 user group 5 2008-08-20 symlL -> filel
685846 | rwxrwxrwx 1 user group 8 2008-08-20 syn2 -> not-here
%cat filel

This is filel.

% cat linkl

This is filel.

% cat syml

This is filel.

% cat synP

cat: synR: No such file or directory

%/binfrmfilel

Accessing and manipulating files, hard links, and soft/sylialioks.
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UNIX/Linux Link Example (3 of 3)

%ls -1li

685844 -rw------ 1 user group 15 2008-08-20 linkl

685845 | rwxrwxrwx 1 user group 5 2008-08-20 syml -> filel
685846 | rwxrwxrwx 1 user group 8 2008-08-20 syn2 -> not-here
% cat |inkl

This is filel.

% cat syml

cat: synl: No such file or directory

% cat > filel

This is a brand new filel.

<cntl -d>
%ls -1li
685847 -rw------ 1 user group 27 2008-08-20 filel
685844 -rw------ 1 user group 15 2008-08-20 linkl

685845 | rwxrwxrwx 1 user group 5 2008-08-20 symlL -> filel
685846 | rwxrwxrwx 1 user group 8 2008-08-20 synR -> not-here
% cat |inkl

This is filel.

% cat synil

This is a brand new filel.

Different behaviour for hard links and soft/symbolic links.
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Multiple File Systems

e itis not uncommon for a system to have multiple file systems

e some kind of global file namespace is required

e two examples:

DOS/Windows: use twepart file names: file system name, pathname

— example: C:\user\cs350\ schedul e. t xt
Unix: merge file graphs into a single graph
— Unix nount system call does this

CS350 Operating Systems Fall 2013
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Unix nount Example

"root" file system file system X
r
9
result of mount (file system X, /x/a)
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Links and Multiple File Systems

e ahard link associates a name in the file system namespace with a file in that fil

system

e typically, hard links cannot cross file system boundaries

e for example, even after the mount operation illustrated on the previous slide,

i nk(/x/alx/g,/!zld) would resultin an error, because the new link,

which is in the root file system refers to an object in file system X

e soft links do not have this limitation

e for example, after the mount operation illustrated on the previous slide:

—sym ink(/x/alx/g,/!zld) would succeed

— open(/ z/ d) would succeed, with the effect of openihg/ a/ x/ g.

e even ifthesyml i nk operation were to occureforethenount command, it

would succeed
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File System Implementation

e space management
e file indexing (how to locate file data and metata)
e directories
e links
¢ buffering, in-memory data structures
¢ fault tolerance
CS350 Operating Systems Fall 2013

142



File Systems 23

Space Allocation and Layout

e space may be allocated in fixesize chunks, or in chunks of varying size
e fixed-size chunks: simple space management, but internal fragmentation

e variable-size chunks: external fragmentation

IEEEEENENNEEEEEEE

fixed—size allocation

| | |

variable-size allocation

¢ layoutmatters! Try to lay a file out sequentially, or in large sequential extents
that can be read and written efficiently.
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File Indexing

e in general, a file will require more than one chunk of allocated space
e this is especially true because files can grow

e how to find all of a file’s data?

chaining:
— each chunk includes a pointer to the next chunk
— OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example
— like chaining, but the chain is kept in an external structure

per-file index: Unix i-node, for example
— for each file, maintain a table of pointers to the file’s blocks or extents
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Chaining
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External Chaining (File Access Table)
I
| =<
| S
| S
I ~ <
I h = =~ ~
| S~
!  — v ~~_  external chain
T — )
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Per-File Indexing

CS350 Operating Systems Fall 2013
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Internal File Identifiers

¢ typically, a file system will assign a unique internal identifier to each file,
directory or other object

e given an identifer, the file system cdirectly locate a record containing key
information about the file, such as:

— the peffile index to the file data (if per-file indexing is used), or the location
of the file’s first data block (if chaining is used)

— file meta-data (or a reference to the meta-data), such as
« file owner
x file access permissions
x file acesss timestamps
x file type

o for example, a file identifier might be a number which indexes an on-disk array
of file records
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Example: Unix i-nodes

e ani-node is a record describing a file

e each i-node is uniquely identified by an i-number, which determines its physica

location on the disk

e ani-node is dixed sizgecord containing:

file attribute values
— file type
— file owner and group
— access controls
— creation, reference and update timestamps
— file size
direct block pointers: approximately 10 of these
single indirect block pointer
double indirect block pointer

triple indirect block pointer

CS350 Operating Systems
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i-node Diagram

i—-node (not to scale!) data blocks

attribute values

direct
direct

direct .

single indirect

double indirect

triple indirect

indirect blocks
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Directories

e A directory consists of a set of entries, where each entry is a record that
includes:

— afile name (component of a path name)
— the internal file identifier (e.g.;mumber) of the file

e A directory can be implemented as a special type of file. The directory entries
are the contents of the file.

e The file system should not allow directory files to be directly written by
application programs. Instead, the directory is updated by the file system as fil¢
are created and destroyed
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Implementing Hard Links

e hard links are simply directory entries

e for example, consider:
link(/ylklg,/zlm

e to implement this:
1. find out the internal file identifier fary/ k/ g

2. create a new entry in directofy

— file name in new entry im
— file identifier (i-number) in the new entry is the one discovered in step 1
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Implementing Soft Links

¢ soft links can be implemented as a special type of file

e for example, consider:
symink(/yl/klg,/zlm
e to implement this:
— create a newgymlinkfile

— add a new entry in directoryz
x file name in new entry im
x I-number in the new entry is the i-number of the new symlink file

— store the pathname string “/y/k/g” as the contents of the new symlink file

e change the behaviour of tlpen system call so that when the symlink file is
encountered duringpen(/ z/ m) , the file/ y/ k/ g will be opened instead.
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Main Memory Data Structures

Primary Memory (volatile)

per process system open file table block buffer cache
open file tables \\ (cached copies of blocks)

0 s

1 B

2

3 \i:.
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3 AN \E o

3 cached i-nodes -

l'l%l N

= B E 1 E g

data blocks, index blocks, i-nodes, etc.

Secondary Memory (persistent)
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Problems Caused by Failures

e asingle logical file system operation may require several disk I/O operations

e example: deleting a file
— remove entry from directory
— remove file index @node) from i-node table
— mark file’s data blocks free in free space index

e what if, because of a failure, some but not all of these changes are reflected or
the disk?
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Fault Tolerance

e special-purpose consistency checkers (e.g., Wsigk in Berkeley FFS, Linux
ext2)

— runs after a crash, before normal operations resume

— find and attempt to repair inconsistent file system data structures, e.g.:
« file with no directory entry

x free space that is not marked as free
e journaling (e.g., Veritas, NTFS, Linux ext3)

— record file system meta-data changes in a journal (log), so that sequences
changes can be written to disk in a single operation

— afterchanges have been journaled, update the disk data structures
(write-ahead logginy

— after a failure, redo journaled updates in case they were not done before thg
failure
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Interprocess Communication Mechanisms

e shared storage

— These mechanisms have already been covered. examples:
+ shared virtual memory
« Shared files

— processes must agree on a name (e.g., a file name, or a shared virtual
memory key) in order to establish communication

e message based

— signals
— sockets
— pipes
CS350 Operating Systems Fall 2013
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Message Passing
Indirect Message Passing
. operating system .
sender receiver
send . . receive
(operating systemw
sender = receiver
send L . J receive

Direct Message Passing

If message passing is indirect, the message passing systetrhawe some
capacity to buffer (store) messages.
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Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:

e simplex (oneway)

e duplex (two-way)

¢ half-duplex (two-way, but only one way at a time)
Message Boundaries:

datagram model: message boundaries

stream model: no boundaries
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Properties of Message Passing Mechanisms (cont'd)

Connections: need to connect before communicating?

e in connection-oriented models, recipient is specified at time of connection,
not by individual send operations. All messages sent over a connection hay
the same recipient.

e in connectionless models, recipient is specified as a parameter to each sen
operation.
Reliability:
e can messages get lost?
e can messages get reordered?

e can messages get damaged?
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Sockets

e asocket is a communicaticend-point

e if two processes are to communicate, each process must create its own socke

e two common types of sockets

stream sockets: support connecticoriented, reliable, duplex communication
under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex
communication under the datagram model (message boundaries)
e both types of sockets also support a variety of address domains, e.g.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols.
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Using Datagram Sockets (Receiver)
s = socket (addressType, SOCK DGRAM) ;

bi nd( s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

;:'I‘ose(s);

socket creates a socket

bi nd assigns an address to the socket

r ecvf r omreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

bothbuf andsour ceAddr ess are filled by the ecvf r omcall
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Using Datagram Sockets (Sender)

s = socket (addressType, SOCK DGRAM) ;
sendt o( s, buf, negLengt h, t ar get Addr ess)

;:'I‘ose(s);

e socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent
— nmsgLengt h indicates the length of the message in the buffer

— tar get Addr ess is the address of the socket to which the message is to
be delivered
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More on Datagram Sockets

e sendt o andr ecvf r omcallsmayblock

— recvfromblocks if there are no messages to be received from the
specified socket

— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliable
— messages (datagrams) may be lost
— messages may be reordered

e The sending process must know the address of the receive process’s socket.
How does it know this?
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A Socket Address Convention

Servi ce Por t Descri ption

echo 7/ udp

syst at 11/tcp

net st at 15/tcp

char gen 19/ udp

ftp 21/ tcp

ssh 22/ tcp # SSH Renote Logi n Protocol

t el net 23/ tcp

sntp 25/ tcp

tinme 37/ udp

gopher 70/ tcp # Internet CGopher

finger 79/ tcp

VWY 80/tcp # Wor | dW deWeb HTTP

pop2 109/tcp # POP version 2

i map2 143/ tcp # | VAP
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Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM ;
bi nd(s, addr ess) ;

l'isten(s, backl og);

ns = accept (s, sour ceAddress);
recv(ns, buf, buf Lengt h) ;

send( ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don’'t accept nore connections

e | i st en specifies the number of connection requests for this socket that will bg

queued by the kernel
e accept accepts a connection request and creates a new socket (
e recv receives up tiouf Lengt h bytes of data from the connection

e send sendsuf Lengt h bytes of data over the connection.
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Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of the
socket that has made the connection request

e additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)
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Using Stream Sockets (Active Process)

s = socket (addressType, SOCK STREAM;
connect (s, target Addr ess) ;

send( s, buf, buf Lengt h) ;

recv(s, buf, buf Lengt h) ;

;:.I‘ose(s);

e connect sends a connection request to the socket with the specified address
— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the socket (bsind)
before connecting. This is the address that will be returned bgdloept call
in the passive process

e if the active process does not choose an address, the system will choose one
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lllustration of Stream Socket Connections

y queue of connection request:

s [TTTH s
s2
s3
socket
process 1 process 2
(active) (passive)
process 3
(active)
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Pipes

pipes are communication objects (not gumints)
pipes use the stream model and are connection-oriented and reliable
some pipes are simplex, some are duplex

pipes use an implicit addressing mechanism that limits their use to
communication betweerlatedprocesses, typically a child process and its
parent

api pe() system call creates a pipe and returns two descriptors, one for each
end of the pipe
— for a simplex pipe, one descriptor is for reading, the other is for writing

— for a duplex pipe, both descriptors can be used for reading and writing
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One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char n{] = "nmessage for parent"”;

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

if (pid == 0) {
/1l child executes this
close(fd[0]); // close read end of pipe
wite(fd[ 1], m19);

} else {
/'l parent executes this
close(fd[1]); // close wite end of pipe
read(fd[0],y, 19);
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lllustration of Example (after pi pe())

parent process
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lllustration of Example (after f ork())
parent process child process
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lllustration of Example (after cl ose())
parent process child process
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named pipe:

message queue:

Examples of Other Interprocess Communication Mechanisms

e similar to pipes, but with an associated name (usually a file name)

e name allows arbitrary processes to communicate by opening the same
named pipe
e must be explicitly deleted, unlike an unnamed pipe

¢ like a named pipe, except that there are message boundaries

e nsgsend call sends a message into the quawsgr ecv call receives the
next message from the queue
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Signals

signals permit asynchronous ome&y communication
— from a process to another process, or to a group of processes, via the kern¢

— from the kernel to a process, or to a group of processes
there are many types of signals

the arrival of a signal may cause the execution sigmal handlerin the
receiving process

there may be a different handler for each type of signal
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Examples of Signal Types

Si gnal Val ue Action Comment
SI A NT 2 Term Interrupt from keyboard
SIA LL 4 Core [l egal Instruction
SI &KI LL 9 Term Kill signal
SIGCHLD 20, 17, 18 I gn Chil d stopped or term nated
SI GBUS 10, 7, 10 Core Bus error

SI GXCPU 24, 24, 30 Core CPUtinme limt exceeded
SI GSTOP 17,19, 23 St op Stop process
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Signal Handling

operating system determines default signal handling for each new process

example default actions:
— ignore (do nothing)
— kill (terminate the process)

— stop (block the process)

a running process can change the default for some types of signals

signatrelated system calls
— calls to set non-default signal handlers, e.g., Wsibgnal , si gacti on
— calls to send signals, e.g., Unx | |
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Implementing IPC

e application processes use descriptors (identifiers) provided by the kernel to ref¢
to specific sockets and pipes, as well as files and other objects

e kerneldescriptor tablegor other similar mechanism) are used to associate
descriptors with kernel data structures that implement IPC objects

e kernel provides bounded buffer space for data that has been sent using an IPC
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a per object basis

— IPC end points, like sockets, buffering is associated with each endpoint

I~ A

system call \&‘ buffer k’ system call
interface interface

operating system
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Network Interprocess Communication

e some sockets can be used to connect processes that are running on different
machines

e the kernel:
— controls access to network interfaces

— multiplexes socket connections across the network

01010 @

L |
7y SR R

Y g A / operating
negwork interface network interface| SYSteM
/n@y\
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Networking Reference Models

e |ISO/OSI Reference

Model
7 | Application Layer | """
6 | Presentation Layef B e ECI
5 Session Layer fayer N service
4 | Transport Layer LaperN =o)L
3| Network Layer
2 | Data Link Layer
1 Physical Layer l A i
Layer yert

e Internet Model
— layers 14 and 7
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Internet Protocol (IP): Layer 3
e every machine has one (or more) IP address, in addition to its data link layer
address(es)

e InIPv4, addresses are 32 bits, and are commonly written using “dot” notation,
e.g..
— cpu06.student.cs 129.97.152.106
— www.google.ca= 216.239.37.99 or 216.239.51.104 or ...

¢ IP moves packets (datagrams) from one machine to another machine

e principal function of IP igouting: determining the network path that a packet
should take to reach its destination

¢ |IP packet delivery is “best effort” (unreliable)
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IP Routing Table Example

¢ Routing table for zonker.uwaterloo.ca, which is on three networks, and has IP
addresses 129.97.74.66, 172.16.162.1, and 192.168.148.1 (one per network):

Destination Gateway | Interface

172.16.162.* - vmnetl
129.97.74.* - ethO
192.168.148.* - vmnet8

default 129.97.74.1 ethO

e routing table key:
destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is directly
reachable)

interface: which network interface to use to send this packet
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Internet Transport Protocols

TCP: transport control protocol

e connection-oriented

e reliable

e Stream

e congestion control

e used to implement INET domain stream sockets
UDP: user datagram protocol

e connectionless

e unreliable

datagram

no congestion control

used to implement INET domain datagram sockets
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TCP and UDP Ports
e since there can be many TCP or UDP communications end points (sockets) on
single machine, there must be a way to distinguish among them

e each TCP or UDP address can be thought of as having two parts:

(machine name, port number)

e The machine name is the IP address of a machine, and the port number serves
distinguish among the end points on that machine.

e INET domain socket addresses are TCP or UDP addresses (depending on
whether the socket is a stream socket or a datagram socket).
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Example of Network Layers

Application Application
Process Process

Transport Transport
[ = = = = — e e e e e e e e m e m - = >

Instance Instance

Network Network Network Network

Instance Instance Instance Instance

Data Link Data Link Data Link Data Link

Instance Instance Instance Instance

T\ gateways ”J
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Network Packets (UDP Example)

application message

UDP payload

UDP header application message

IP payload
-z pay >

IP Header | UDP header application message

Data Link Payload

Data Link Header | IP Header | UDP header| application message
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BSD Unix Networking Layers

process

system calls

socket layer

% % socket queues

protocol layer A
0
I

/ i
interface
queues % % % (IP) protocol queue

interface layer
(ethernet,PPP,loopback,...)

network network network
device device device
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