
CS 350

Operating Systems

Course Notes

Fall 2013

David R. Cheriton

School of Computer Science

University of Waterloo

Intro 1

What is an Operating System?

• Three views of an operating system

Application View: what services does it provide?

System View: what problems does it solve?

Implementation View: how is it built?

An operating system is part cop, part facilitator.

CS350 Operating Systems Fall 2013

Intro 2

Application View of an Operating System

• The OS provides an execution environment for running programs.

– The execution environment provides a program with the processor time and

memory space that it needs to run.

– The execution environment provides interfaces through which a program can

use networks, storage, I/O devices, and other system hardware components.

∗ Interfaces provide a simplified, abstract view of hardware to application

programs.

– The execution environment isolates running programs from one another and

prevents undesirable interactions among them.

CS350 Operating Systems Fall 2013

1

Intro 3

Other Views of an Operating System

System View: The OS manages the hardware resources of a computer system.

• Resources include processors, memory, disks and other storage devices,

network interfaces, I/O devices such as keyboards, mice and monitors, and

so on.

• The operating system allocates resources among running programs. It

controls the sharing of resources among programs.

• The OS itself also uses resources, which it must share with application

programs.

Implementation View: The OS is a concurrent, real-time program.

• Concurrency arises naturally in an OS when it supports concurrent

applications, and because it must interact directly with the hardware.

• Hardware interactions also impose timing constraints.

CS350 Operating Systems Fall 2013

Intro 4

The Operating System and the Kernel

• Some terminology:

kernel: The operating system kernel is the part of the operating system that

responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and

may include other related programs that provide services for applications.

This may include things like:

– utility programs

– command interpreters

– programming libraries

CS350 Operating Systems Fall 2013

2

Intro 5

Schematic View of an Operating System

Operating System

data and interruptscommands

system calls system call

and data

results

Resources

User Programs

system call interface
kernel

user−space

Kernel

CS350 Operating Systems Fall 2013

Intro 6

Operating System Abstractions

• The execution environment provided by the OS includes a variety of abstract

entities that can be manipulated by a running program. Examples:

files and file systems:abstract view of secondary storage

address spaces:abstract view of primary memory

processes, threads:abstract view of program execution

sockets, pipes:abstract view of network or other message channels

• This course will cover

– why these abstractions are designed the way they are

– how these abstractions are manipulated by application programs

– how these abstractions are implemented by the OS

CS350 Operating Systems Fall 2013

3

Intro 7

Course Outline

• Introduction

• Threads and Concurrency

• Synchronization

• Processes and the Kernel

• Virtual Memory

• Scheduling

• Devices and Device Management

• File Systems

• Interprocess Communication and Networking (time permitting)

CS350 Operating Systems Fall 2013

4

Threads and Concurrency 1

Review: Program Execution

• Registers

– program counter, stack pointer,. . .

• Memory

– program code

– program data

– program stack containing procedure activation records

• CPU

– fetches and executes instructions

CS350 Operating Systems Fall 2013

Threads and Concurrency 2

Review: MIPS Register Usage

R0, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assembler

R2, v0 = ## return value / system call number

R3, v1 = ## return value

R4, a0 = ## 1st argument (to subroutine)

R5, a1 = ## 2nd argument

R6, a2 = ## 3rd argument

R7, a3 = ## 4th argument

CS350 Operating Systems Fall 2013

5

Threads and Concurrency 3

Review: MIPS Register Usage

R08-R15, t0-t7 = ## temps (not preserved by subroutines)

R24-R25, t8-t9 = ## temps (not preserved by subroutines)

can be used without saving

R16-R23, s0-s7 = ## preserved by subroutines

save before using,

restore before return

R26-27, k0-k1 = ## reserved for interrupt handler

R28, gp = ## global pointer

(for easy access to some variables)

R29, sp = ## stack pointer

R30, s8/fp = ## 9th subroutine reg / frame pointer

R31, ra = ## return addr (used by jal)

CS350 Operating Systems Fall 2013

Threads and Concurrency 4

What is a Thread?

• A thread represents the control state of an executing program.

• A thread has an associatedcontext(or state), which consists of

– the processor’s CPU state, including the values of the program counter (PC),

the stack pointer, other registers, and the execution mode

(privileged/non-privileged)

– a stack, which is located in the address space of the thread’s process

Imagine that you would like to suspend the program execution,and resume

it again later. Think of the thread context as the information you would

need in order to restart program execution from where it left off when it was

suspended.

CS350 Operating Systems Fall 2013

6

Threads and Concurrency 5

Thread Context

memory

CPU registers

codedatastack

thread context

CS350 Operating Systems Fall 2013

Threads and Concurrency 6

Concurrent Threads

• more than one thread may exist simultaneously (why might this be a good

idea?)

• each thread has its own context, though they may share access to program code

and data

• on a uniprocessor (one CPU), at most one thread is actually executing at any

time. The others are paused, waiting to resume execution.

• on a multiprocessor, multiple threads may execute at the same time, but if there

are more threads than processors then some threads will be paused and waiting

CS350 Operating Systems Fall 2013

7

Threads and Concurrency 7

Example: Concurrent Mouse Simulations

static void mouse_simulation(void * unusedpointer,
unsigned long mousenumber)

{
int i; unsigned int bowl;

for(i=0;i<NumLoops;i++) {
/* for now, this mouse chooses a random bowl from

* which to eat, and it is not synchronized with

* other cats and mice

*/
/* legal bowl numbers range from 1 to NumBowls */
bowl = ((unsigned int)random() % NumBowls) + 1;
mouse_eat(bowl);

}

/* indicate that this mouse is finished */
V(CatMouseWait);

}

CS350 Operating Systems Fall 2013

Threads and Concurrency 8

Implementing Threads

• a thread library is responsibile for implementing threads

• the thread library stores threads’ contexts (or pointers to the threads’ contexts)

when they are not running

• the data structure used by the thread library to store a thread context is

sometimes called athread control block

In the OS/161 kernel’s thread implementation, thread contexts are stored in

thread structures.

CS350 Operating Systems Fall 2013

8

Threads and Concurrency 9

Thread Library and Two Threads

CPU registers

memory

codestack 2 datastack 1

thread library

thread 1 context (running thread)

thread 2 context (waiting thread)

CS350 Operating Systems Fall 2013

Threads and Concurrency 10

The OS/161thread Structure

/* see kern/include/thread.h */

struct thread {

char *t_name; /* Name of this thread */

const char *t_wchan_name; /* Wait channel name, if sleeping */

threadstate_t t_state; /* State this thread is in */

/* Thread subsystem internal fields. */

struct thread_machdep t_machdep; /* Any machine-dependent goo */

struct threadlistnode t_listnode; /* run/sleep/zombie lists */

void *t_stack; /* Kernel-level stack */

struct switchframe *t_context; /* Register context (on stack) */

struct cpu *t_cpu; /* CPU thread runs on */

struct proc *t_proc; /* Process thread belongs to */

...

CS350 Operating Systems Fall 2013

9

Threads and Concurrency 11

Thread Library and Two Threads (OS/161)

CPU registers

memory

stack 2stack 1 codedata

thread library

structures

thread 1 context (running thread)

thread

CS350 Operating Systems Fall 2013

Threads and Concurrency 12

Context Switch, Scheduling, and Dispatching

• the act of pausing the execution of one thread and resuming the execution of
another is called a(thread) context switch

• what happens during a context switch?

1. decide which thread will run next

2. save the context of the currently running thread

3. restore the context of the thread that is to run next

• the act of saving the context of the current thread and installing the context of
the next thread to run is calleddispatching(the next thread)

• sounds simple, but. . .

– architecture-specific implementation

– thread must save/restore its context carefully, since thread execution
continuously changes the context

– can be tricky to understand (at what point does a thread actually stop? what
is it executing when it resumes?)

CS350 Operating Systems Fall 2013

10

Threads and Concurrency 13

Dispatching on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:
/* a0: address of switchframe pointer of old thread. */
/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)

CS350 Operating Systems Fall 2013

Threads and Concurrency 14

Dispatching on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */
lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 40 /* in delay slot */
.end switchframe_switch

CS350 Operating Systems Fall 2013

11

Threads and Concurrency 15

Dispatching on the MIPS (Notes)

• Not all of the registers are saved during a context switch

• This is because the context switch code is reached via a call to

thread switch and by convention on the MIPS not all of the registers are

required to be preserved across subroutine calls

• thus, after a call toswitchframe switch returns, the caller

(thread switch) does not expect all registers to have the same values as

they had before the call- to save time, those registers are not preserved by the

switch

• if the caller wants to reuse those registers it must save and restore them

CS350 Operating Systems Fall 2013

Threads and Concurrency 16

Thread Library Interface

• the thread library interface allows program code to manipulate threads

• one key thread library interface function isYield()

• Yield() causes the calling thread to stop and wait, and causes the thread library

to choose some other waiting thread to run in its place. In other words, Yield()

causes a context switch.

• in addition toYield(), thread libraries typically provide other thread-related

services:

– create new thread

– end (and destroy) a thread

– cause a thread toblock(to be discussed later)

CS350 Operating Systems Fall 2013

12

Threads and Concurrency 17

The OS/161 Thread Interface (incomplete)

/* see kern/include/thread.h */

int thread_fork(const char *name, struct proc *proc,

void (*func)(void *, unsigned long),

void *data1, unsigned long data2);

/* Cause the current thread to exit. */

/* Interrupts need not be disabled. */

void thread_exit(void);

/* Let another thread run, caller stays runnable. */

void thread_yield(void);

/* Potentially migrate ready threads to other CPUs */

void thread_consider_migration(void);

CS350 Operating Systems Fall 2013

Threads and Concurrency 18

The OS/161 Thread / Wait Channel Interface (incomplete)

/* see kern/include/wchan.h */

void wchan_lock(struct wchan *wc);

void wchan_unlock(struct wchan *wc);

/* Sleep on a wait channel until awakened by someone else

* Channel must be locked, and will have been *unlocked*

* upon return. */

void wchan_sleep(struct wchan *wc);

/* Wake up one/all threads, sleeping on wait channel. */

/* Channel should not already be locked. */

void wchan_wakeone(struct wchan *wc);

void wchan_wakeall(struct wchan *wc);

CS350 Operating Systems Fall 2013

13

Threads and Concurrency 19

Creating Threads Usingthread fork()

/* From kern/synchprobs/catmouse.c */

for (index = 0; index < NumMice; index++) {

error = thread_fork("mouse_simulation thread",

NULL, mouse_simulation, NULL, index);

if (error) {

panic("mouse_simulation: thread_fork failed: %s\n",

strerror(error));

}

}

/* wait for all of the cats and mice to finish */

for(i=0;i<(NumCats+NumMice);i++) {

P(CatMouseWait);

}

CS350 Operating Systems Fall 2013

Threads and Concurrency 20

Scheduling

• scheduling means deciding which thread should run next

• scheduling is implemented by ascheduler, which is part of the thread library

• simple FIFO scheduling:

– scheduler maintains a queue of threads, often called theready queue

– the first thread in the ready queue is the running thread

– on a context switch the running thread is moved to the end of the ready

queue, and new first thread is allowed to run

– newly created threads are placed at the end of the ready queue

• more on scheduling later. . .

CS350 Operating Systems Fall 2013

14

Threads and Concurrency 21

Preemption

• Yield() allows programs tovoluntarily pause their execution to allow

another thread to run

• sometimes it is desirable to make a thread stop running even if it has not called

Yield()

• this kind of involuntarycontext switch is calledpreemptionof the running

thread

• to implement preemption, the thread library must have a means of “getting

control” (causing thread library code to be executed) even though the

application has not called a thread library function

• this is normally accomplished usinginterrupts

CS350 Operating Systems Fall 2013

Threads and Concurrency 22

Review: Interrupts

• an interrupt is an event that occurs during the execution of a program

• interrupts are caused by system devices (hardware), e.g., a timer, a disk
controller, a network interface

• when an interrupt occurs, the hardware automatically transfers control to a fixed
location in memory

• at that memory location, the thread library places a procedure called an
interrupt handler

• the interrupt handler normally:

1. saves the current thread context (in OS/161, this is saved in atrap frameon
the current thread’s stack)

2. determines which device caused the interrupt and performs device-specific
processing

3. restores the saved thread context and resumes execution in that context
where it left off at the time of the interrupt.

CS350 Operating Systems Fall 2013

15

Threads and Concurrency 23

Round-Robin Scheduling

• round-robinis one example of a preemptive scheduling policy

• round-robin scheduling is similar to FIFO scheduling, except that it is

preemptive

• as in FIFO scheduling, there is a ready queue and the thread at the front of the

ready queue runs

• unlike FIFO, a limit is placed on the amount of time that a thread can run before

it is preempted

• the amount of time that a thread is allocated is called the schedulingquantum

• when the running thread’s quantum expires, it is preempted and moved to the

back of the ready queue. The thread at the front of the ready queue is

dispatched and allowed to run.

CS350 Operating Systems Fall 2013

Threads and Concurrency 24

Implementing Preemptive Scheduling

• suppose that the system timer generates an interrupt everyt time units, e.g.,

once every millisecond

• suppose that the thread library wants to use a scheduling quantumq = 500t,

i.e., it will preempt a thread after half a second of execution

• to implement this, the thread library can maintain a variable called

running time to track how long the current thread has been running:

– when a thread is intially dispatched,running time is set to zero

– when an interrupt occurs, the timer-specific part of the interrupt handler can

incrementrunning time and then test its value

∗ if running time is less thanq, the interrupt handler simply returns and

the running thread resumes its execution

∗ if running time is equal toq, then the interrupt handler invokes

Yield() to cause a context switch

CS350 Operating Systems Fall 2013

16

Threads and Concurrency 25

OS/161 Stack after Preemption

stack growth

thread_switch()
stack frame

(switchframe)

application
stack frame(s)

stack frame

interrupt handling
stack frame(s)

thread_yield()

trap frame

saved thread context

CS350 Operating Systems Fall 2013

Threads and Concurrency 26

OS/161 Stack after Voluntary Context Switch (thread yield())

stack growth

application
stack frame(s)

(switchframe)

stack frame
thread_yield()

saved thread context

thread_switch
stack frame

CS350 Operating Systems Fall 2013

17

Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each

processor.

• On uniprocessors, only one thread executes at a time. However, because of

preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on uniprocessors.

CS350 Operating Systems Fall 2013

Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a variety of ways:

– Threads share access, through the operating system, to system devices (more

on this later. . .)

– Threads may share access to program data, e.g., global variables.

• A common synchronization problem is to enforcemutual exclusion, which

means making sure that only one thread at a time uses a shared object, e.g., a

variable or a device.

• The part of a program in which the shared object is accessed is called acritical

section.

CS350 Operating Systems Fall 2013

18

Synchronization 3

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

} }

If one thread executesadd and another executessub what is the value of

total when they have finished?

CS350 Operating Systems Fall 2013

Synchronization 4

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

CS350 Operating Systems Fall 2013

19

Synchronization 5

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

<INTERRUPT>

sw R9 0(R8) total=1

One possible order of execution.

CS350 Operating Systems Fall 2013

Synchronization 6

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

<INTERRUPT>

add R9 1 R9=1

sw R9 0(R8) total=1

<INTERRUPT>

sub R11 1 R11=-1

sw R11 0(R10) total=-1

Another possible order of execution. Many interleavings of instructions are

possible. Synchronization is required to ensure a correct ordering.

CS350 Operating Systems Fall 2013

20

Synchronization 7

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

add R9 1 sub R11 1

} }

sw R9 0(R8) sw R11 0(R10)

} }

Without volatile the compiler could optimize the code. If onethread executes

add and another executessub, what is the value oftotal when they have

finished?

CS350 Operating Systems Fall 2013

Synchronization 8

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

add R9 N sub R11 N

sw R9 0(R8) sw R11 0(R10)

} }

The compiler could aggressively optimize the code., Volatile tells the com-

piler that the object may change for reasons which cannot be determined

from the local code (e.g., due to interaction with a device or because of an-

other thread).

CS350 Operating Systems Fall 2013

21

Synchronization 9

The use of volatile

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

The volatile declaration forces the compiler to load and store the value on

every use. Using volatile is necessary but not sufficient for correct behaviour.

Mutual exclusion is also required to ensure a correct ordering of instructions.

CS350 Operating Systems Fall 2013

Synchronization 10

Ensuring Correctness with Multiple Threads

/* Note the use of volatile */

int volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

Allow one thread to to execute and make others wait

total++; total--;

Permit one waiting thread to continue execution

} }

} }

Threads must enforce mutual exclusion.

CS350 Operating Systems Fall 2013

22

Synchronization 11

Critical Section Example (Part 1)

int list remove front(list *lp) {
int num;
list element *element;
assert(!is empty(lp));
element = lp->first;
num = lp->first->item;
if (lp->first == lp->last) {

lp->first = lp->last = NULL;
} else {

lp->first = element->next;
}
lp->num_in_list--;
free(element);
return num;

}

Thelist remove front function is a critical section. It may not work

properly if two threads call it at the same time on the samelist. (Why?)

CS350 Operating Systems Fall 2013

Synchronization 12

Critical Section Example (Part 2)

void list append(list *lp, int new item) {

list element *element = malloc(sizeof(list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {

lp->first = element; lp->last = element;

} else {

lp->last->next = element; lp->last = element;

}

lp->num in list++;

}

The list append function is part of the same critical section as

list remove front. It may not work properly if two threads call

it at the same time, or if a thread calls it while another has called

list remove front

CS350 Operating Systems Fall 2013

23

Synchronization 13

Enforcing Mutual Exclusion

• mutual exclusion algorithms ensure that only one thread at a time executes the

code in a critical section

• several techniques for enforcing mutual exclusion

– exploit special hardware-specific machine instructions, e.g.,test-and-set,

compare-and-swap, or load-link / store-conditional, that are intended for

this purpose

– use mutual exclusion algorithms, e.g.,Peterson’s algorithm, that rely only

on atomic loads and stores

– control interrupts to ensure that threads are not preempted while they are

executing a critical section

CS350 Operating Systems Fall 2013

Synchronization 14

Disabling Interrupts

• On a uniprocessor, only one thread at a time is actually running.

• If the running thread is executing a critical section, mutual exclusion may be

violated if

1. the running thread is preempted (or voluntarily yields) while it is in the

critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters

the same critical section that the preempted thread was in

• Since preemption is caused by timer interrupts, mutual exclusion can be

enforced by disabling timer interrupts before a thread enters the critical section,

and re-enabling them when the thread leaves the critical section.

CS350 Operating Systems Fall 2013

24

Synchronization 15

Interrupts in OS/161

This is one way that the OS/161 kernel enforces mutual exclusion on a single

processor. There is a simple interface

• spl0() sets IPL to 0, enabling all interrupts.

• splhigh() sets IPL to the highest value, disabling all interrupts.

• splx(s) sets IPL to S, enabling whatever state S represents.

These are used by splx() and by the spinlock code.

• splraise(int oldipl, int newipl)

• spllower(int oldipl, int newipl)

• For splraise,NEWIPL > OLDIPL, and for spllower,NEWIPL < OLDIPL.

Seekern/include/spl.h andkern/thread/spl.c

CS350 Operating Systems Fall 2013

Synchronization 16

Pros and Cons of Disabling Interrupts

• advantages:

– does not require any hardware-specific synchronization instructions

– works for any number of concurrent threads

• disadvantages:

– indiscriminate: prevents all preemption, not just preemption that would

threaten the critical section

– ignoring timer interrupts has side effects, e.g., kernel unaware of passage of

time. (Worse, OS/161’ssplhigh() disablesall interrupts, not just timer

interrupts.) Keep critical sectionsshort to minimize these problems.

– will not enforce mutual exclusion on multiprocessors (why??)

CS350 Operating Systems Fall 2013

25

Synchronization 17

Peterson’s Mutual Exclusion Algorithm

/* shared variables */

/* note: one flag array and turn variable */

/* for each critical section */

boolean volatile flag[2]; /* shared, initially false */

int volatile turn; /* shared */

flag[i] = true; /* for one thread, i = 0 and j = 1 */

turn = j; /* for the other, i = 1 and j = 0 */

while (flag[j] && turn == j) { } /* busy wait */

critical section /* e.g., call to list remove front */

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but works only for two

threads. (Why?)

CS350 Operating Systems Fall 2013

Synchronization 18

Hardware-Specific Synchronization Instructions

• a test-and-set instructionatomicallysets the value of a specified memory

location and either

– places that memory location’sold value into a register, or

– checks a condition against the memory location’s old value and records the

result of the check in a register

• for presentation purposes, we will abstract such an instruction as a function

TestAndSet(address,value), which takes a memory location

(address) and a value as parameters. It atomically storesvalue at the

memory location specified byaddress and returns the previous value stored

at that address

• Often only two values are used 0 and 1 so thevalue parameter is not used and

a value of 1 is implied (e.g., in OS/161)

CS350 Operating Systems Fall 2013

26

Synchronization 19

A Spin Lock Using Test-And-Set in OS/161

• a test-and-set instruction can be used to enforce mutual exclusion

• for each critical section, define a shared variable

volatile spinlock data t lk lock; /* initially 0 */

We will use the lock variable to keep track of whether there is a thread in the

critical section, in which case the value oflk lock will be 1

• before a thread can enter the critical section, it does the following:

while (spinlock data testandset(&lk->lk lock) != 0) {

/* busy wait */

}

• if lk lock == 0 then it is set to 1 and the thread enters the critical section

• when the thread leaves the critical section, it does:

spinlock data set(&lk->lk lock, 0);

CS350 Operating Systems Fall 2013

Synchronization 20

A Spin Lock Using Test-And-Set

• this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known as aspin lock, since a thread “spins” in

the while loop until the critical section is free. Spin locks are widely used on

multiprocessors.

CS350 Operating Systems Fall 2013

27

Synchronization 21

Spinlocks in OS/161

struct spinlock {

volatile spinlock_data_t lk_lock; /* word for spin */

struct cpu *lk_holder; /* CPU holding this lock */

};

void spinlock_init(struct spinlock *lk);

void spinlock_cleanup(struct spinlock *lk);

void spinlock_acquire(struct spinlock *lk);

void spinlock_release(struct spinlock *lk);

bool spinlock_do_i_hold(struct spinlock *lk);

CS350 Operating Systems Fall 2013

Synchronization 22

Spinlocks in OS/161

spinlock_init(struct spinlock *lk)
{

spinlock_data_set(&lk->lk_lock, 0);
lk->lk_holder = NULL;

}

void spinlock_cleanup(struct spinlock *lk)
{

KASSERT(lk->lk_holder == NULL);
KASSERT(spinlock_data_get(&lk->lk_lock) == 0);

}

void spinlock_data_set(volatile spinlock_data_t *sd,
unsigned val)

{

*sd = val;
}

CS350 Operating Systems Fall 2013

28

Synchronization 23

Spinlocks in OS/161

void spinlock_acquire(struct spinlock *lk)

{

struct cpu *mycpu;

splraise(IPL_NONE, IPL_HIGH);

/* this must work before curcpu initialization */

if (CURCPU_EXISTS()) {

mycpu = curcpu->c_self;

if (lk->lk_holder == mycpu) {

panic("Deadlock on spinlock %p\n", lk);

}

} else {

mycpu = NULL;

}

CS350 Operating Systems Fall 2013

Synchronization 24

Spinlocks in OS/161

while (1) {

/* Do test-test-and-set to reduce bus contention */

if (spinlock_data_get(&lk->lk_lock) != 0) {

continue;

}

if (spinlock_data_testandset(&lk->lk_lock) != 0) {

continue;

}

break;

}

lk->lk_holder = mycpu;

}

CS350 Operating Systems Fall 2013

29

Synchronization 25

Spinlocks in OS/161

void spinlock_release(struct spinlock *lk)

{

/* this must work before curcpu initialization */

if (CURCPU_EXISTS()) {

KASSERT(lk->lk_holder == curcpu->c_self);

}

lk->lk_holder = NULL;

spinlock_data_set(&lk->lk_lock, 0);

spllower(IPL_HIGH, IPL_NONE);

}

CS350 Operating Systems Fall 2013

Synchronization 26

Load-Link / Store-Conditional

Load-link returns the current value of a memory location, while a subsequent

store-conditional to the same memory location will store a new value only if no

updates have occurred to that location since the load-link.

spinlock_data_testandset(volatile spinlock_data_t *sd)

{

spinlock_data_t x,y;

/* Test-and-set using LL/SC.

* Load the existing value into X, and use Y to store 1.

* After the SC, Y contains 1 if the store succeeded,

* 0 if it failed. On failure, return 1 to pretend

* that the spinlock was already held.

*/

y = 1;

CS350 Operating Systems Fall 2013

30

Synchronization 27

Load-Link / Store-Conditional

__asm volatile(

".set push;" /* save assembler mode */

".set mips32;" /* allow MIPS32 instructions */

".set volatile;" /* avoid unwanted optimization */

"ll %0, 0(%2);" /* x = *sd */

"sc %1, 0(%2);" /* *sd = y; y = success? */

".set pop" /* restore assembler mode */

: "=r" (x), "+r" (y) : "r" (sd));

if (y == 0) {

return 1;

}

return x;

}

CS350 Operating Systems Fall 2013

Synchronization 28

Pros and Cons of Spinlocks

• Pros:

– can be efficient for short critical sections

– using hardware specific synchronization instructions means it works on

multiprocessors

• Cons:

– CPU is busy (nothing else runs) while waiting for lock

– starvation is possible

If critical section is short prefer spinlock.

If critical section is long prefer blocking lock.

Hybrid locks will spin for a period of time before blocking.

Question: How to determine how long to spin for hybrid lock?

CS350 Operating Systems Fall 2013

31

Synchronization 29

Semaphores

• A semaphore is a synchronization primitive that can be used to enforce mutual

exclusion requirements. It can also be used to solve other kinds of

synchronization problems.

• A semaphore is an object that has an integer value, and that supports two

operations:

P: if the semaphore value is greater than0, decrement the value. Otherwise,

wait until the value is greater than0 and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores:can take on any non-negative value

binary semaphores: take on only the values0 and1. (V on a binary

semaphore with value1 has no effect.)

By definition, theP andV operations of a semaphore areatomic.

CS350 Operating Systems Fall 2013

Synchronization 30

A Simple Example using Semaphores

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P(sem); P(sem);

total++; total--;

V(sem); V(sem);

} }

} }

What type of semaphore can be used forsem?

CS350 Operating Systems Fall 2013

32

Synchronization 31

OS/161 Semaphores

struct semaphore {

char *sem name;

struct wchan *sem wchan;

struct spinlock sem lock;

volatile int sem count;

};

struct semaphore *sem create(const char *name,

int initial count);

void P(struct semaphore *s);

void V(struct semaphore *s);

void sem destroy(struct semaphore *s);

seekern/include/synch.h andkern/thread/synch.c

CS350 Operating Systems Fall 2013

Synchronization 32

Mutual Exclusion Using a Semaphore

struct semaphore *s;

s = sem create("MySem1", 1); /* initial value is 1 */

P(s); /* do this before entering critical section */

critical section /* e.g., call to list remove front */

V(s); /* do this after leaving critical section */

CS350 Operating Systems Fall 2013

33

Synchronization 33

OS/161 Semaphores:P() from kern/thread/synch.c

P(struct semaphore *sem)

{

KASSERT(sem != NULL);

KASSERT(curthread->t in interrupt == false);

spinlock acquire(&sem->sem lock);

while (sem->sem count == 0) {

/* Note: we don’t maintain strict FIFO ordering */

wchan lock(sem->sem wchan);

spinlock release(&sem->sem lock);

wchan sleep(sem->sem wchan);

spinlock acquire(&sem->sem lock);

}

KASSERT(sem->sem count > 0);

sem->sem count--;

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Fall 2013

Synchronization 34

OS/161 Semaphores:V() from kern/thread/synch.c

V(struct semaphore *sem)

{

KASSERT(sem != NULL);

spinlock acquire(&sem->sem lock);

sem->sem count++;

KASSERT(sem->sem count > 0);

wchan wakeone(sem->sem wchan);

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Fall 2013

34

Synchronization 35

Thread Blocking

• Sometimes a thread will need to wait for an event. One example is on the

previous slide: a thread that attempts aP() operation on a zero-valued

semaphore must wait until the semaphore’s value becomes positive.

• other examples that we will see later on:

– wait for data from a (relatively) slow device

– wait for input from a keyboard

– wait for busy device to become idle

• In these circumstances, we do not want the thread to run, since it cannot do

anything useful.

• To handle this, the thread scheduler canblock threads.

CS350 Operating Systems Fall 2013

Synchronization 36

Thread Blocking in OS/161

• OS/161 thread library functions:

– void wchan sleep(struct wchan *wc)

∗ blocks calling thread on wait channelwc

– void wchan wakeall(struct wchan *wc)

∗ unblock all threads sleeping on wait channelwc

– void wchan wakeone(struct wchan *wc)

∗ unblock one thread sleeping on wait channelwc

CS350 Operating Systems Fall 2013

35

Synchronization 37

Thread Blocking in OS/161

• wchan sleep() is much likethread yield(). The calling thread is

voluntarily giving up the CPU, so the scheduler chooses a new thread to run, the

state of the running thread is saved and the new thread is dispatched. However:

– after athread yield(), the calling thread isreadyto run again as soon

as it is chosen by the scheduler

– after awchan sleep(), the calling thread isblocked, and must not be

scheduled to run again until after it has been explicitly unblocked by a call

to wchan wakeone() or wchan wakeall().

CS350 Operating Systems Fall 2013

Synchronization 38

Thread States

• avery simple thread state transition diagram

(thread_wakeup())

ready

blocked

dispatch

need resource or eventgot resource or event

running

quantum expires
or thread_yield()

(thread_sleep())

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Fall 2013

36

Synchronization 39

Producer/Consumer Synchronization

• suppose we have threads that add items to a list (producers) and threads that

remove items from the list (consumers)

• suppose we want to ensure that consumers do not consume if the list is empty-

instead they must wait until the list has something in it

• this requires synchronization between consumers and producers

• semaphores can provide the necessary synchronization, as shown on the next

slide

CS350 Operating Systems Fall 2013

Synchronization 40

Producer/Consumer Synchronization using Semaphores

struct semaphore *s;

s = sem create("Items", 0); /* initial value is 0 */

Producer’s Pseudo-code:

add item to the list (call list append())

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from the list (call list remove front())

The Items semaphore does not enforce mutual exclusion on the list. If we

want mutual exclusion, we can also use semaphores to enforce it. (How?)

CS350 Operating Systems Fall 2013

37

Synchronization 41

Bounded Buffer Producer/Consumer Synchronization

• suppose we add one more requirement: the number of items in the list should

not exceedN

• producers that try to add items when the list is full should be made to wait until

the list is no longer full

• We can use an additional semaphore to enforce this new constraint:

– semaphoreFull is used to count the number of full (occupied) entries in

the list (to ensure nothing is produced if the list is full)

– semaphoreEmpty is used to count the number of empty (unoccupied)

entries in the list (to ensure nothing is consumed if the list is empty)

struct semaphore *full;

struct semaphore *empty;

full = sem create("Full", 0); /* initial value = 0 */

empty = sem create("Empty", N); /* initial value = N */

CS350 Operating Systems Fall 2013

Synchronization 42

Bounded Buffer Producer/Consumer Synchronization with Semaphores

Producer’s Pseudo-code:

P(empty);

add item to the list (call list append())

V(full);

Consumer’s Pseudo-code:

P(full);

remove item from the list (call list remove front())

V(empty);

CS350 Operating Systems Fall 2013

38

Synchronization 43

OS/161 Locks

• OS/161 also uses a synchronization primitive called alock. Locks are intended

to be used to enforce mutual exclusion.

struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

• A lock is similar to a binary semaphore with an initial value of 1. However,

locks also enforce an additional constraint: the thread that releases a lock must

be the same thread that most recently acquired it.

• The system enforces this additional constraint to help ensure that locks are used

as intended.

CS350 Operating Systems Fall 2013

Synchronization 44

Reader/Writer Locks

• Reader/Writer (or a shared) locks can be acquired in either of read (shared) or

write (exclusive) mode

• In OS/161 reader/writer locks might look like this:

struct rwlock *rwlock = rw lock create("RWLock");

rwlock aquire(rwlock, READ_MODE);

can only read shared resources

/* access is shared by readers */

rwlock release(rwlock);

rwlock aquire(rwlock, WRITE_MODE);

can read and write shared resources

/* access is exclusive to only one writer */

rwlock release(rwlock);

CS350 Operating Systems Fall 2013

39

Synchronization 45

Critical Section Requirements

• Mutual exclusion: While one thread is executing in the critical section no other

thread can execute in that critical section.

• Progress: The thread in the critical section will eventually leave the critical

section.

• Bounded waiting: Any thread will wait for a bounded amount of time before it

is able to enter the critical section.

CS350 Operating Systems Fall 2013

Synchronization 46

Performance Issues

• Overhead: the memory and CPU resources used when acquiring and releasing

access to critical sections

• Contention: competition for access to the critical section

• Granularity : the amount of code executed while in a critical section

Why are these important issues?

CS350 Operating Systems Fall 2013

40

Synchronization 47

Lock Overhead, Contention and Granularity (Option 1)

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P / Acquire P / Acquire

total++; total--;

V / Release V / Release

} }

} }

Should one useP()/V(), spinlock acquire()/spinlock release()

or lock acquire()/lock release?

CS350 Operating Systems Fall 2013

Synchronization 48

Lock Overhead, Contention and Granularity (Option 2)

void add() { void sub() {

int i; int i;

P / Acquire P / Acquire

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

V / Release V / Release

} }

Which option is better Option 1 (previous slide) or 2 (this slide)? Why?

Does the choice of where to do synchronization influence the choice of which

mechanism to use for synchronization?

CS350 Operating Systems Fall 2013

41

Synchronization 49

Condition Variables

• OS/161 supports another common synchronization primitive:condition

variables

• each condition variable is intended to work together with a lock: condition

variables are only usedfrom within the critical section that is protected by the

lock

• three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases the lock associated

with the condition variable. Once the thread is unblocked it reacquires the

lock.

signal: If threads are blocked on the signaled condition variable, then one of

those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the

condition variable.

CS350 Operating Systems Fall 2013

Synchronization 50

Using Condition Variables

• Condition variables get their name because they allow threads to wait for

arbitrary conditions to become true inside of a critical section.

• Normally, each condition variable corresponds to a particular condition that is

of interest to an application. For example, in the bounded buffer

producer/consumer example on the following slides, the two conditions are:

– count > 0 (condition variablenotempty)

– count < N (condition variablenotfull)

• when a condition is not true, a thread canwait on the corresponding condition

variable until it becomes true

• when a thread detects that a condition is true, it usessignal or broadcast

to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that has no

waiters hasno effect. Signals do not accumulate.

CS350 Operating Systems Fall 2013

42

Synchronization 51

Waiting on Condition Variables

• when a blocked thread is unblocked (bysignal or broadcast), it

reacquires the lock before returning from thewait call

• a thread is in the critical section when it callswait, and it will be in the critical

section whenwait returns. However, in between the call and the return, while

the caller is blocked, the caller is out of the critical section, and other threads

may enter.

• In particular, the thread that callssignal (or broadcast) to wake up the

waiting thread will itself be in the critical section when it signals. The waiting

thread will have to wait (at least) until the signaller releases the lock before it

can unblock and return from thewait call.

This describes Mesa-style condition variables, which are used in OS/161.

There are alternative condition variable semantics (Hoare semantics), which

differ from the semantics described here.

CS350 Operating Systems Fall 2013

Synchronization 52

Bounded Buffer Producer Using Condition Variables

int volatile count = 0; /* must initially be 0 */
struct lock *mutex; /* for mutual exclusion */
struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created

* using lock create() and cv create() before Produce()

* and Consume() are called */

Produce(itemType item) {
lock acquire(mutex);
while (count == N) {

cv wait(notfull, mutex);
}
add item to buffer (call list append())
count = count + 1;
cv signal(notempty, mutex);
lock release(mutex);

}

CS350 Operating Systems Fall 2013

43

Synchronization 53

Bounded Buffer Consumer Using Condition Variables

itemType Consume() {

lock acquire(mutex);

while (count == 0) {

cv wait(notempty, mutex);

}

remove item from buffer (call list remove front())

count = count - 1;

cv signal(notfull, mutex);

lock release(mutex);

return(item);

}

Both Produce() andConsume() call cv wait() inside of awhile

loop. Why?

CS350 Operating Systems Fall 2013

Synchronization 54

Monitors

• Condition variables are derived frommonitors. A monitor is a programming

language construct that provides synchronized access to shared data. Monitors

have appeared in many languages, e.g., Ada, Mesa, Java.

• a monitor is essentially an object with special concurrency semantics

• it is an object, meaning

– it has data elements

– the data elements are encapsulated by a set of methods, which are the only

functions that directly access the object’s data elements

• only onemonitor method may be active at a time, i.e., the monitor methods

(together) form a critical section

– if two threads attempt to execute methods at the same time, one will be

blocked until the other finishes

• inside a monitor, condition variables can be declared and used

CS350 Operating Systems Fall 2013

44

Synchronization 55

Monitors in OS/161

• The C language, in which OS/161 is written, does not support monitors.

• However, programming convention and OS/161 locks and condition variables

can be used to provide monitor-like behavior for shared kernel data structures:

– define a C structure to implement the object’s data elements

– define a set of C functions to manipulate that structure (these are the object

“methods”)

– ensure that only those functions directly manipulate the structure

– create an OS/161 lock to enforce mutual exclusion

– ensure that each access method acquires the lock when it starts and releases

the lock when it finishes

– if desired, define one or more condition variables and use them within the

methods.

CS350 Operating Systems Fall 2013

Synchronization 56

Deadlocks

• Suppose there are two threads and two locks,lockA andlockB, both initially

unlocked.

• Suppose the following sequence of events occurs

1. Thread 1 doeslock acquire(lockA).

2. Thread 2 doeslock acquire(lockB).

3. Thread 1 doeslock acquire(lockB) and blocks, becauselockB is

held by thread 2.

4. Thread 2 doeslock acquire(lockA) and blocks, becauselockA is

held by thread 1.

These two threads aredeadlocked- neither thread can make progress. Wait-

ing will not resolve the deadlock. The threads are permanently stuck.

CS350 Operating Systems Fall 2013

45

Synchronization 57

Deadlocks (Another Simple Example)

• Suppose a machine has64 MB of memory. The following sequence of events

occurs.

1. ThreadA starts, requests30 MB of memory.

2. ThreadB starts, also requests30 MB of memory.

3. ThreadA requests an additional8 MB of memory. The kernel blocks thread

A since there is only4 MB of available memory.

4. ThreadB requests an additional5 MB of memory. The kernel blocks thread

B since there is not enough memory available.

These two threads are deadlocked.

CS350 Operating Systems Fall 2013

Synchronization 58

Resource Allocation Graph (Example)

R1 R2 R3

R4 R5

T1 T2 T3

resource request resource allocation

Is there a deadlock in this system?

CS350 Operating Systems Fall 2013

46

Synchronization 59

Resource Allocation Graph (Another Example)

R1 R2 R3

R4 R5

T1 T2 T3

Is there a deadlock in this system?

CS350 Operating Systems Fall 2013

Synchronization 60

Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has

resources allocated to it. A thread may hold several resources, but to do so it

must make a single request for all of them.

Preemption: take resources away from a thread and give them to another (usually

not possible). Thread is restarted when it can acquire all the resources it needs.

Resource Ordering: Order (e.g., number) the resource types, and require that each

thread acquire resources in increasing resource type order. That is, a thread may

make no requests for resources of type less than or equal toi if it is holding

resources of typei.

CS350 Operating Systems Fall 2013

47

Synchronization 61

Deadlock Detection and Recovery

• main idea: the system maintains the resource allocation graph and tests it to

determine whether there is a deadlock. If there is, the system must recover from

the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the

threads involved in the deadlock

• when to test for deadlocks? Can test on every blocked resource request, or can

simply test periodically. Deadlocks persist, so periodic detection will not

“miss” them.

Deadlock detection and deadlock recovery are both costly. This approach

makes sense only if deadlocks are expected to be infrequent.

CS350 Operating Systems Fall 2013

Synchronization 62

Detecting Deadlock in a Resource Allocation Graph

• System State Notation:

– Di: demand vector for threadTi

– Ai: current allocation vector for threadTi

– U : unallocated (available) resource vector

• Additional Algorithm Notation:

– R: scratch resource vector

– fi: algorithm is finished with threadTi? (boolean)

CS350 Operating Systems Fall 2013

48

Synchronization 63

Detecting Deadlock (cont’d)

/* initialization */

R = U

for all i, fi = false

/* can each thread finish? */

while ∃ i (¬ fi ∧ (Di ≤ R)) {

R = R + Ai

fi = true

}

/* if not, there is a deadlock */

if ∃ i (¬ fi) then report deadlock

else report no deadlock

CS350 Operating Systems Fall 2013

Synchronization 64

Deadlock Detection, Positive Example

• D1 = (0, 1, 0, 0, 0)

• D2 = (0, 0, 0, 0, 1)

• D3 = (0, 1, 0, 0, 0)

• A1 = (1, 0, 0, 0, 0)

• A2 = (0, 2, 0, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 1, 1, 0)

R1 R2 R3

R4 R5

T1 T2 T3

resource request resource allocation

The deadlock detection algorithm will terminate withf1 == f2 == f3 ==

false, so this system is deadlocked.

CS350 Operating Systems Fall 2013

49

Synchronization 65

Deadlock Detection, Negative Example

• D1 = (0, 1, 0, 0, 0)

• D2 = (1, 0, 0, 0, 0)

• D3 = (0, 0, 0, 0, 0)

• A1 = (1, 0, 0, 1, 0)

• A2 = (0, 2, 1, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 0, 0, 0)

R1 R2 R3

R4 R5

T1 T2 T3

This system is not in deadlock. It is possible that the threadswill run to

completion in the orderT3, T1, T2.

CS350 Operating Systems Fall 2013

50

Processes and the Kernel 1

What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of

• anaddress space, which represents the memory that holds the program’s

code and data

• a threadof execution (possibly several threads)

• other resources associated with the running program. For example:

– open files

– sockets

– attributes, such as a name (process identifier)

– . . .

A process with one thread is asequentialprocess. A process with more than

one thread is aconcurrentprocess.

CS350 Operating Systems Fall 2013

Processes and the Kernel 2

Multiprogramming

• multiprogramming means having multiple processes existing at the same time

• most modern, general purpose operating systems support multiprogramming

• all processes share the available hardware resources, with the sharing

coordinated by the operating system:

– Each process uses some of the available memory to hold its address space.

The OS decides which memory and how much memory each process gets

– OS can coordinate shared access to devices (keyboards, disks), since

processes use these devices indirectly, by making system calls.

– Processestimesharethe processor(s). Again, timesharing is controlled by

the operating system.

• OS ensures that processes are isolated from one another. Interprocess

communication should be possible, but only at the explicit request of the

processes involved.

CS350 Operating Systems Fall 2013

51

Processes and the Kernel 3

The OS Kernel

• The kernel is a program. It has code and data like any other program.

• Usually kernel code runs in a privileged execution mode, while other programs

do not

CS350 Operating Systems Fall 2013

Processes and the Kernel 4

An Application and the Kernel

CPU registers

memory data codedata codestack

thread library

application kernel

CS350 Operating Systems Fall 2013

52

Processes and the Kernel 5

Kernel Privilege, Kernel Protection

• What does it mean to run in privileged mode?

• Kernel uses privilege to

– control hardware

– protect and isolate itself from processes

• privileges vary from platform to platform, but may include:

– ability to execute special instructions (likehalt)

– ability to manipulate processor state (like execution mode)

– ability to access memory addresses that can’t be accessed otherwise

• kernel ensures that it isisolatedfrom processes. No process can execute or

change kernel code, or read or write kernel data, except through controlled

mechanisms like system calls.

CS350 Operating Systems Fall 2013

Processes and the Kernel 6

System Calls

• System calls are an interface between processes and the kernel.

• A process uses system calls to request operating system services.

• From point of view of the process, these services are used to manipulate the

abstractions that are part of its execution environment. For example, a process

might use a system call to

– open a file

– send a message over a pipe

– create another process

– increase the size of its address space

CS350 Operating Systems Fall 2013

53

Processes and the Kernel 7

How System Calls Work

• The hardware provides a mechanism that a running program can use to cause a

system call. Often, it is a special instruction, e.g., the MIPSsyscall

instruction.

• What happens on a system call:

– the processor is switched to system (privileged) execution mode

– key parts of the current thread context, such as the program counter, are

saved

– the program counter is set to a fixed (determined by the hardware) memory

address, which is within the kernel’s address space

CS350 Operating Systems Fall 2013

Processes and the Kernel 8

System Call Execution and Return

• Once a system call occurs, the calling thread will be executing a system call

handler, which is part of the kernel, in privileged mode.

• The kernel’s handler determines which service the calling process wanted, and

performs that service.

• When the kernel is finished, it returns from the system call. This means:

– restore the key parts of the thread context that were saved when the system

call was made

– switch the processor back to unprivileged (user) execution mode

• Now the thread is executing the calling process’ program again, picking up

where it left off when it made the system call.

A system call causes a thread to stop executing application code and to start

executing kernel code in privileged mode. The system call return switches

the thread back to executing application code in unprivileged mode.

CS350 Operating Systems Fall 2013

54

Processes and the Kernel 9

System Call Diagram

path

Process Kernel

time

system call return

system call

thread
execution

CS350 Operating Systems Fall 2013

Processes and the Kernel 10

OS/161close System Call Description

Library: standard C library (libc)

Synopsis:

#include <unistd.h>

int

close(int fd);

Description: The file handlefd is closed.. . .

Return Values: On success,close returns 0. On error,-1 is returned anderrno

is set according to the error encountered.

Errors:

EBADF: fd is not a valid file handle

EIO: A hard I/O error occurred

CS350 Operating Systems Fall 2013

55

Processes and the Kernel 11

An Example System Call: A Tiny OS/161 Application that Usesclose

/* Program: user/uw-testbin/syscall.c */

#include <unistd.h>

#include <errno.h>

int

main()

{

int x;

x = close(999);

if (x < 0) {

return errno;

}

return x;

}

CS350 Operating Systems Fall 2013

Processes and the Kernel 12

Disassembly listing of user/uw-testbin/syscall

00400050 <main>:
400050: 27bdffe8 addiu sp,sp,-24
400054: afbf0010 sw ra,16(sp)
400058: 0c100077 jal 4001dc <close>
40005c: 240403e7 li a0,999
400060: 04410003 bgez v0,400070 <main+0x20>
400064: 00000000 nop
400068: 3c021000 lui v0,0x1000
40006c: 8c420000 lw v0,0(v0)
400070: 8fbf0010 lw ra,16(sp)
400074: 00000000 nop
400078: 03e00008 jr ra
40007c: 27bd0018 addiu sp,sp,24

The above can be obtained by disassembling the compiledsyscall exe-

cutable file withcs350-objdump -d

CS350 Operating Systems Fall 2013

56

Processes and the Kernel 13

System Call Wrapper Functions from the Standard Library

...

004001dc <close>:

4001dc: 08100030 j 4000c0 <__syscall>

4001e0: 24020031 li v0,49

004001e4 <read>:

4001e4: 08100030 j 4000c0 <__syscall>

4001e8: 24020032 li v0,50

...

The above is disassembled code from the standard C library (libc), which is

linked withuser/uw-testbin/syscall.o.

CS350 Operating Systems Fall 2013

Processes and the Kernel 14

OS/161 MIPS System Call Conventions

• When thesyscall instruction occurs:

– An integer system call code should be located in register R2 (v0)

– Any system call arguments should be located in registers R4 (a0), R5 (a1),

R6 (a2), and R7 (a3), much like procedure call arguments.

• When the system call returns

– register R7 (a3) will contain a 0 if the system call succeeded, or a 1 if the

system call failed

– register R2 (v0) will contain the system call return value if the system call

succeeded, or an error number (errno) if the system call failed.

CS350 Operating Systems Fall 2013

57

Processes and the Kernel 15

OS/161 System Call Code Definitions

/* Contains a number for every more-or-less standard */

/* Unix system call (you will implement some subset). */

...

#define SYS_close 49

#define SYS_read 50

#define SYS_pread 51

//#define SYS_readv 52 /* won’t be implementing */

//#define SYS_preadv 53 /* won’t be implementing */

#define SYS_getdirentry 54

#define SYS_write 55

...

This comes fromkern/include/kern/syscall.h. The files in

kern/include/kern define things (like system call codes) that must be

known by both the kernel and applications.

CS350 Operating Systems Fall 2013

Processes and the Kernel 16

The OS/161 System Call and Return Processing

004000c0 <__syscall>:

4000c0: 0000000c syscall

4000c4: 10e00005 beqz a3,4000dc <__syscall+0x1c>

4000c8: 00000000 nop

4000cc: 3c011000 lui at,0x1000

4000d0: ac220000 sw v0,0(at)

4000d4: 2403ffff li v1,-1

4000d8: 2402ffff li v0,-1

4000dc: 03e00008 jr ra

4000e0: 00000000 nop

The system call and return processing, from the standard C library. Like the

rest of the library, this is unprivileged, user-level code.

CS350 Operating Systems Fall 2013

58

Processes and the Kernel 17

OS/161 MIPS Exception Handler

common_exception:

mfc0 k0, c0_status /* Get status register */

andi k0, k0, CST_KUp /* Check the we-were-in-user-mode bit */

beq k0, $0, 1f /* If clear, from kernel, already have stack */

/* 1f is branch forward to label 1: */

nop /* delay slot */

/* Coming from user mode - find kernel stack */

mfc0 k1, c0_context /* we keep the CPU number here */

srl k1, k1, CTX_PTBASESHIFT /* shift to get the CPU number */

sll k1, k1, 2 /* shift back to make array index */

lui k0, %hi(cpustacks) /* get base address of cpustacks[] */

addu k0, k0, k1 /* index it */

move k1, sp /* Save previous stack pointer */

b 2f /* Skip to common code */

lw sp, %lo(cpustacks)(k0) /* Load kernel sp (in delay slot) */

CS350 Operating Systems Fall 2013

Processes and the Kernel 18

OS/161 MIPS Exception Handler

1:

/* Coming from kernel mode - just save previous stuff */

move k1, sp /* Save previous stack in k1 (delay slot) */

2:

/* At this point:

* Interrupts are off. (The processor did this for us.)

* k0 contains the value for curthread, to go into s7.

* k1 contains the old stack pointer.

* sp points into the kernel stack.

* All other registers are untouched.

*/

When the syscall instruction occurs, the MIPS transfers control to ad-

dress 0x80000080. This kernel exception handler lives there. See

kern/arch/mips/locore/exception-mips1.S

CS350 Operating Systems Fall 2013

59

Processes and the Kernel 19

OS/161 User and Kernel Thread Stacks

memory

CPU registers

stack codedata code datastack

thread library

application kernel

Each OS/161 thread has two stacks, one that is used while the thread is ex-

ecuting unprivileged application code, and another that is used while the

thread is executing privileged kernel code.

CS350 Operating Systems Fall 2013

Processes and the Kernel 20

OS/161 MIPS Exception Handler (cont’d)

Thecommon exception code then does the following:

1. allocates atrap frameon the thread’s kernel stack and saves the user-level

application’s complete processor state (all registers except k0 and k1) into the

trap frame.

2. calls themips trap function to continue processing the exception.

3. whenmips trap returns, restores the application processor state from the trap

frame to the registers

4. issues MIPSjr andrfe (restore from exception) instructions to return control

to the application code. Thejr instruction takes control back to the location

specified by the application program counter when thesyscall occurred (i.e.,

exception PC) and therfe (which happens in the delay slot of thejr) restores

the processor to unprivileged mode

CS350 Operating Systems Fall 2013

60

Processes and the Kernel 21

OS/161 Trap Frame

memory

CPU registers

data codestackstack datacode

application state

thread library

trap frame with saved

application kernel

While the kernel handles the system call, the application’s CPU state is saved

in a trap frame on the thread’s kernel stack, and the CPU registers are avail-

able to hold kernel execution state.

CS350 Operating Systems Fall 2013

Processes and the Kernel 22

mips trap: Handling System Calls, Exceptions, and Interrupts

• On the MIPS, the same exception handler is invoked to handle system calls,

exceptions and interrupts

• The hardware sets a code to indicate the reason (system call, exception, or

interrupt) that the exception handler has been invoked

• OS/161 has a handler function corresponding to each of these reasons. The

mips trap function tests the reason code and calls the appropriate function:

the system call handler (syscall) in the case of a system call.

• mips trap can be found inkern/arch/mips/locore/trap.c.

Interrupts and exceptions will be presented shortly

CS350 Operating Systems Fall 2013

61

Processes and the Kernel 23

OS/161 System Call Handler

syscall(struct trapframe *tf)
{ callno = tf->tf_v0; retval = 0;

switch (callno) {
case SYS_reboot:

err = sys_reboot(tf->tf_a0);
break;

case SYS___time:
err = sys___time((userptr_t)tf->tf_a0,

(userptr_t)tf->tf_a1);
break;

/* Add stuff here */

default:
kprintf("Unknown syscall %d\n", callno);
err = ENOSYS;
break;

}

syscall checks system call code and invokes a handler for the indicated
system call. Seekern/arch/mips/syscall/syscall.c

CS350 Operating Systems Fall 2013

Processes and the Kernel 24

OS/161 MIPS System Call Return Handling

if (err) {
tf->tf_v0 = err;
tf->tf_a3 = 1; /* signal an error */

} else {
/* Success. */
tf->tf_v0 = retval;
tf->tf_a3 = 0; /* signal no error */

}

/* Advance the PC, to avoid the syscall again. */
tf->tf_epc += 4;

/* Make sure the syscall code didn’t forget to lower spl */
KASSERT(curthread->t_curspl == 0);
/* ...or leak any spinlocks */
KASSERT(curthread->t_iplhigh_count == 0);

}

syscall must ensure that the kernel adheres to the system call return con-
vention.

CS350 Operating Systems Fall 2013

62

Processes and the Kernel 25

Exceptions

• Exceptions are another way that control is transferred from a process to the

kernel.

• Exceptions are conditions that occur during the execution of an instruction by a

process. For example, arithmetic overflows, illegal instructions, or page faults

(to be discussed later).

• Exceptions are detected by the hardware.

• When an exception is detected, the hardware transfers control to a specific

address.

• Normally, a kernel exception handler is located at that address.

Exception handling is similar to, but not identical to, system call handling.

(What is different?)

CS350 Operating Systems Fall 2013

Processes and the Kernel 26

MIPS Exceptions

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

In OS/161,mips trap uses these codes to decide whether it has been in-

voked because of an interrupt, a system call, or an exception.

CS350 Operating Systems Fall 2013

63

Processes and the Kernel 27

Interrupts (Revisited)

• Interrupts are a third mechanism by which control may be transferred to the

kernel

• Interrupts are similar to exceptions. However, they are caused by hardware

devices, not by the execution of a program. For example:

– a network interface may generate an interrupt when a network packet arrives

– a disk controller may generate an interrupt to indicate that it has finished

writing data to the disk

– a timer may generate an interrupt to indicate that time has passed

• Interrupt handling is similar to exception handling- current execution context is

saved, and control is transferred to a kernel interrupt handler at a fixed address.

CS350 Operating Systems Fall 2013

Processes and the Kernel 28

Interrupts, Exceptions, and System Calls: Summary

• interrupts, exceptions and system calls are three mechanisms by which control

is transferred from an application program to the kernel

• when these events occur, the hardware switches the CPU into privileged mode

and transfers control to a predefined location, at which a kernelhandlershould

be located

• the handler saves the application thread context so that the kernel code can be

executed on the CPU, and restores the application thread context just before

control is returned to the application

CS350 Operating Systems Fall 2013

64

Processes and the Kernel 29

Implementation of Processes

• The kernel maintains information about all of the processes in the system in a

data structure often called the process table.

• Per-process information may include:

– process identifier and owner

– the address space for the process

– threads belonging to the process

– lists of resources allocated to the process, such as open files

– accounting information

CS350 Operating Systems Fall 2013

Processes and the Kernel 30

OS/161 Process

/* From kern/include/proc.h */

struct proc {

char *p_name; /* Name of this process */

struct spinlock p_lock; /* Lock for this structure */

struct threadarray p_threads; /* Threads in process */

struct addrspace *p_addrspace; /* virtual address space */

struct vnode *p_cwd; /* current working directory */

/* add more material here as needed */

};

CS350 Operating Systems Fall 2013

65

Processes and the Kernel 31

OS/161 Process

/* From kern/include/proc.h */

/* Create a fresh process for use by runprogram() */

struct proc *proc_create_runprogram(const char *name);

/* Destroy a process */

void proc_destroy(struct proc *proc);

/* Attach a thread to a process */

/* Must not already have a process */

int proc_addthread(struct proc *proc, struct thread *t);

/* Detach a thread from its process */

void proc_remthread(struct thread *t);

...

CS350 Operating Systems Fall 2013

Processes and the Kernel 32

Implementing Timesharing

• whenever a system call, exception, or interrupt occurs, control is transferred

from the running program to the kernel

• at these points, the kernel has the ability to cause a context switch from the

running process’ thread to another process’ thread

• notice that these context switches always occur while a process’ thread is

executing kernel code

By switching from one process’s thread to another process’s thread, the ker-

nel timeshares the processor among multiple processes.

CS350 Operating Systems Fall 2013

66

Processes and the Kernel 33

Two Processes in OS/161

CPU registers

data code codedatadata codestack stack stackstack

trap frame for app #1 thread library

saved kernel thread
context for thread #1

application #2kernelapplication #1

CS350 Operating Systems Fall 2013

Processes and the Kernel 34

Timesharing Example (Part 1)

ready, not running

KernelProcess A Process B

context switch

A’s thread is
ready, not running

system call
or exception
or interrupt

Kernel switches execution context to Process B.

return

B’s thread is

CS350 Operating Systems Fall 2013

67

Processes and the Kernel 35

Timesharing Example (Part 2)

return

KernelProcess A Process B

Kernel switches execution context back to process A.

B’s thread is
ready, not running

context switch
system call
or exception
or interrupt

CS350 Operating Systems Fall 2013

Processes and the Kernel 36

Implementing Preemption

• the kernel uses interrupts from the system timer to measure the passage of time

and to determine whether the running process’s quantum has expired.

• a timer interrupt (like any other interrupt) transfers control from the running

program to the kernel.

• this gives the kernel the opportunity to preempt the running thread and dispatch

a new one.

CS350 Operating Systems Fall 2013

68

Processes and the Kernel 37

Preemptive Multiprogramming Example

Key:

KernelProcess A Process B

context
switches

timer interrupt

interrupt return

ready thread

running thread

CS350 Operating Systems Fall 2013

Processes and the Kernel 38

System Calls for Process Management

Linux OS/161

Creation fork,execv fork,execv

Destruction exit,kill exit

Synchronization wait,waitpid,pause,.. . waitpid

Attribute Mgmt getpid,getuid,nice,getrusage,.. . getpid

CS350 Operating Systems Fall 2013

69

Processes and the Kernel 39

The fork, exit, getpid and waitpid system calls

main()

{

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) {

my_pid = getpid();

x = child_code();

_exit(x);

} else {

child_pid = rc;

parent_code();

child_exit = waitpid(child_pid);

parent_pid = getpid();

}

}

CS350 Operating Systems Fall 2013

Processes and the Kernel 40

The execv system call

int main()

{

int rc = 0;

char *args[4];

args[0] = (char *) "/testbin/argtest";

args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);

printf("If you see this execv failed\n");

printf("rc = %d errno = %d\n", rc, errno);

exit(0);

}

CS350 Operating Systems Fall 2013

70

Processes and the Kernel 41

The Process Model

• Although the general operations supported by the process interface are

straightforward, there are some less obvious aspects of process behaviour that

must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?

What is in the address space? What is the initial thread context? Does it

have any other resources?

Multithreading: Are concurrent processes supported, or is each process

limited to a single thread?

Inter-Process Relationships:Are there relationships among processes, e.g,

parent/child? If so, what do these relationships mean?

CS350 Operating Systems Fall 2013

71

Virtual Memory 1

Virtual and Physical Addresses

• Physical addresses are provided directly by the machine.

– one physical address space per machine

– the size of a physical address determines the maximum amount of

addressable physical memory

• Virtual addresses (or logical addresses) are addresses provided by the OS to

processes.

– one virtual address spaceper process

• Programs use virtual addresses. As a program runs, the hardware (with help

from the operating system) converts each virtual address to a physical address.

• The conversion of a virtual address to a physical address is calledaddress

translation.

On the MIPS, virtual addresses and physical addresses are32 bits long. This

limits the size of virtual and physical address spaces.

CS350 Operating Systems Fall 2013

Virtual Memory 2

Simple Address Translation: Dynamic Relocation

• hardware provides amemory management unitwhich includes arelocation

register

• at run-time, the contents of the relocation register are added to each virtual

address to determine the corresponding physical address

• the OS maintains a separate relocation register value for each process, and

ensures that relocation register is reset on each context switch

• Properties

– each virtual address space corresponds to a contiguous range of physical

addresses

– OS must allocate/deallocate variable-sized chunks of physical memory

– potential forexternal fragmentationof physical memory: wasted,

unallocated space

CS350 Operating Systems Fall 2013

72

Virtual Memory 3

Dynamic Relocation: Address Space Diagram

C

m
−1

0

Proc 1 virtual address space

0

0

max1

max2

virtual address space
Proc 2

physical memory

A

A + max1

C + max2

2

CS350 Operating Systems Fall 2013

Virtual Memory 4

Dynamic Relocation Mechanism

register

v bits m bits

m bits

+

virtual address physical address

relocation

CS350 Operating Systems Fall 2013

73

Virtual Memory 5

Address Translation: Paging

• Each virtual address space is divided into fixed-size chunks calledpages

• The physical address space is divided intoframes. Frame size matches page

size.

• OS maintains apage tablefor each process. Page table specifies the frame in

which each of the process’s pages is located.

• At run time, MMU translates virtual addresses to physical using the page table

of the running process.

• Properties

– simple physical memory management

– potential forinternal fragmentationof physical memory: wasted, allocated

space

– virtual address space need not be physically contiguous in physical space

after translation.

CS350 Operating Systems Fall 2013

Virtual Memory 6

Address Space Diagram for Paging

2
m

−1

0
Proc 1 virtual address space

0

max1

virtual address space
Proc 2

physical memory

max2

0

CS350 Operating Systems Fall 2013

74

Virtual Memory 7

Paging Mechanism

m bits

register
page table base

v bits m bits

frame # offsetpage # offset

virtual address physical address

frame #

page tableprotection and
other flags

CS350 Operating Systems Fall 2013

Virtual Memory 8

Memory Protection

• during address translation, the MMU checks to ensure that the process uses

only valid virtual addresses

– typically, each PTE contains avalid bit which indicates whether that PTE

contains a valid page mapping

– the MMU may also check that the virtual page number does not index a PTE

beyond the end of the page table

• the MMU may also enforce other protection rules

– typically, each PTE contains aread-onlybit that indicates whether the

corresponding page may be modified by the process

• if a process attempts to violated these protection rules, the MMU raises an

exception, which is handled by the kernel

The kernel controls which pages are valid and which are protected by setting

the contents of PTEs and/or MMU registers.

CS350 Operating Systems Fall 2013

75

Virtual Memory 9

Roles of the Kernel and the MMU (Summary)

• Kernel:

– save/restore MMU state on context switches

– create and manage page tables

– manage (allocate/deallocate) physical memory

– handle exceptions raised by the MMU

• MMU (hardware):

– translate virtual addresses to physical addresses

– check for and raise exceptions when necessary

CS350 Operating Systems Fall 2013

Virtual Memory 10

Remaining Issues

translation speed: Address translation happens very frequently. (How frequently?)

It must be fast.

sparseness:Many programs will only need a small part of the available space for

their code and data.

the kernel: Each process has a virtual address space in which to run. What about

the kernel? In which address space does it run?

CS350 Operating Systems Fall 2013

76

Virtual Memory 11

Speed of Address Translation

• Execution of each machine instruction may involve one, two or more memory
operations

– one to fetch instruction

– one or more for instruction operands

• Address translation through a page table adds one extra memory operation (for

page table entry lookup) for each memory operation performed during

instruction execution

– Simple address translation through a page table can cut instruction execution

rate in half.

– More complex translation schemes (e.g., multi-level paging) are even more

expensive.

• Solution: include a Translation Lookaside Buffer (TLB) in the MMU

– TLB is a fast, fully associative address translation cache

– TLB hit avoids page table lookup

CS350 Operating Systems Fall 2013

Virtual Memory 12

TLB

• Each entry in the TLB contains a (page number, frame number) pair.

• If address translation can be accomplished using a TLB entry, access to the

page table is avoided.

• Otherwise, translate through the page table, and add the resulting translation to

the TLB, replacing an existing entry if necessary. In ahardware controlled

TLB, this is done by the MMU. In asoftware controlledTLB, it is done by the

kernel.

• TLB lookup is much faster than a memory access. TLB is an associative

memory - page numbers of all entries are checked simultaneously for a match.

However, the TLB is typically small (typically hundreds, e.g. 128, or 256

entries).

• If the MMU cannot distinguish TLB entries from different address spaces, then

the kernel must clear or invalidate the TLB. (Why?)

CS350 Operating Systems Fall 2013

77

Virtual Memory 13

The MIPS R3000 TLB

• The MIPS has a software-controlled TLB that can hold 64 entries.

• Each TLB entry includes a virtual page number, a physical frame number, an

address space identifier (not used by OS/161), and several flags (valid,

read-only).

• OS/161 provides low-level functions for managing the TLB:

TLB Write: modify a specified TLB entry

TLB Random: modify a random TLB entry

TLB Read: read a specified TLB entry

TLB Probe: look for a page number in the TLB

• If the MMU cannot translate a virtual address using the TLB it raises an

exception, which must be handled by OS/161.

Seekern/arch/mips/include/tlb.h

CS350 Operating Systems Fall 2013

Virtual Memory 14

TLB Shootdown

• If one a processor changes the virtual-to-physical mapping of an address,

mappings of that address in other processors’ TLBs would no longer be valid.

• The changing processor tells the other processors to invalidate that mapping in

their TLB.

• This is called a “TLB shootdown”. The processor is shooting down

(eliminating) entries in other TLBs that are no longer valid.

In OS/161 is it possible to have the same virtual address stored in multiple

TLBs?

CS350 Operating Systems Fall 2013

78

Virtual Memory 15

What is in a Virtual Address Space?

0x00400000 − 0x00401a0c

growth

text (program code) and read−only data

data
0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

This diagram illustrates the layout of the virtual address space for the OS/161

test applicationuser/testbin/sort

CS350 Operating Systems Fall 2013

Virtual Memory 16

Handling Sparse Address Spaces: Sparse Page Tables
0x00400000 − 0x00401a0c

growth

text (program code) and read−only data

data
0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

• Consider the page table foruser/testbin/sort, assuming a 4 Kbyte page:

– need219 page table entries (PTEs) to cover the bottom half of the virtual

address space.

– the text segment occupies 2 pages, the data segment occupies 289 pages,

and OS/161 sets the initial stack size to 12 pages

• The kernel will mark a PTE as invalid if its page is not mapped.

• A page table foruser/testbin/sort, has only303 valid PTEs (of219).

An attempt by a process to access an invalid page causes the MMUto gen-

erate an exception (known as apage fault) which must be handled by the

operating system.

CS350 Operating Systems Fall 2013

79

Virtual Memory 17

Segmentation

• Often, programs (likesort) need several virtual address segments, e.g, for

code, data, and stack.

• One way to support this is to turnsegmentsinto first-class citizens, understood

by the application and directly supported by the OS and the MMU.

• Instead of providing a single virtual address space to each process, the OS

provides multiple virtual segments. Each segment is like a separate virtual

address space, with addresses that start at zero.

• With segmentation, a virtual address can be thought of as having two parts:

(segment ID, address within segment)

• Each segment:

– can grow (or shrink) independently of the other segments, up to some

maximum size

– has its own attributes, e.g, read-only protection

CS350 Operating Systems Fall 2013

Virtual Memory 18

Segmented Address Space Diagram

segment 0

m
−1

0

physical memory

Proc 2

Proc 1
0

0

0

0

segment 1

segment 0

segment 2

2

CS350 Operating Systems Fall 2013

80

Virtual Memory 19

Mechanism for Translating Segmented Addresses

v bits

m bits

m bits

physical address

+seg # offset

virtual address

register
segment table base

startlength

segment table

protection

This translation mechanism requires physically contiguousallocation of seg-

ments.

CS350 Operating Systems Fall 2013

Virtual Memory 20

Combining Segmentation and Paging

segment 0

m
−1

0

Proc 2

Proc 1
0

0

0

0

segment 1

segment 0

segment 2

2

physical memory

CS350 Operating Systems Fall 2013

81

Virtual Memory 21

Combining Segmentation and Paging: Translation Mechanism

m bits

m bits

physical address

register
segment table base

segment table

protection

offset

virtual address

seg # page #

page table
length

v bits

frame # offset

page table

CS350 Operating Systems Fall 2013

Virtual Memory 22

OS/161 Address Spaces: dumbvm

• OS/161 starts with a very simple virtual memory implementation

• virtual address spaces are described byaddrspace objects, which record the
mappings from virtual to physical addresses

struct addrspace {
#if OPT_DUMBVM

vaddr_t as_vbase1; /* base virtual address of code segment */
paddr_t as_pbase1; /* base physical address of code segment */
size_t as_npages1; /* size (in pages) of code segment */
vaddr_t as_vbase2; /* base virtual address of data segment */
paddr_t as_pbase2; /* base physical address of data segment */
size_t as_npages2; /* size (in pages) of data segment */
paddr_t as_stackpbase; /* base physical address of stack */

#else
/* Put stuff here for your VM system */

#endif
};

This amounts to a slightly generalized version of simple dynamic relocation,

with three bases rather than one.

CS350 Operating Systems Fall 2013

82

Virtual Memory 23

Address Translation Underdumbvm

• the MIPS MMU tries to translate each virtual address using the entries in the

TLB

• If there is no valid entry for the page the MMU is trying to translate, the MMU

generates a TLB fault (called anaddress exception)

• Thevm fault function (seekern/arch/mips/vm/dumbvm.c) handles

this exception for the OS/161 kernel. It uses information from the current

process’addrspace to construct and load a TLB entry for the page.

• On return from exception, the MIPS retries the instruction that caused the page

fault. This time, it may succeed.

vm fault is not very sophisticated. If the TLB fills up, OS/161 will crash!

CS350 Operating Systems Fall 2013

Virtual Memory 24

Shared Virtual Memory

• virtual memory sharing allows parts of two or more address spaces to overlap

• shared virtual memory is:

– a way to use physical memory more efficiently, e.g., one copy of a program

can be shared by several processes

– a mechanism for interprocess communication

• sharing is accomplished by mapping virtual addresses from several processes to

the same physical address

• unit of sharing can be a page or a segment

CS350 Operating Systems Fall 2013

83

Virtual Memory 25

Shared Pages Diagram

2
m

−1

0
Proc 1 virtual address space

0

max1

virtual address space
Proc 2

physical memory

max2

0

CS350 Operating Systems Fall 2013

Virtual Memory 26

Shared Segments Diagram

(shared)

m
−1

0

physical memory

Proc 2

Proc 1
0

0

0

0

segment 1

segment 0

segment 2

segment 0

segment 1
(shared)

2

CS350 Operating Systems Fall 2013

84

Virtual Memory 27

An Address Space for the Kernel

• Each process has its own address space. What about the kernel?

• Three possibilities:

Kernel in physical space: disable address translation in privileged system

execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address

translation (e.g., switch page tables) when moving between privileged and

unprivileged code

Kernel mapped into portion of address space ofevery process: OS/161,

Linux, and other operating systems use this approach

– memory protection mechanism is used to isolate the kernel from

applications

– one advantage of this approach: application virtual addresses (e.g.,

system call parameters) are easy for the kernel to use

CS350 Operating Systems Fall 2013

Virtual Memory 28

The Kernel in Process’ Address Spaces

Process 1 Process 2
Address Space Address Space

Kernel
(shared, protected)

Attempts to access kernel code/data in user mode result in memory protec-

tion exceptions, not invalid address exceptions.

CS350 Operating Systems Fall 2013

85

Virtual Memory 29

Address Translation on the MIPS R3000

2 GB
user space kernel space

2 GB

TLB mapped

0x00000000 0xffffffff0x80000000

0xa0000000

0xc0000000

kseg0 kseg1 kseg2kuseg

1 GB0.5GB0.5GB

unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and data structures live

in kseg0, devices are accessed through kseg1, and kseg2 is not used.

CS350 Operating Systems Fall 2013

Virtual Memory 30

Loading a Program into an Address Space

• When the kernel creates a process to run a particular program, it must create an

address space for the process, and load the program’s code and data into that

address space

• A program’s code and data is described in anexecutable file, which is created

when the program is compiled and linked

• OS/161 (and some other operating systems) expect executable files to be in ELF

(Executable andL inking Format) format

• The OS/161execv system call re-initializes the address space of a process

#include <unistd.h>

int

execv(const char *program, char **args)

• Theprogram parameter of theexecv system call should be the name of the

ELF executable file for the program that is to be loaded into the address space.

CS350 Operating Systems Fall 2013

86

Virtual Memory 31

ELF Files

• ELF files contain address space segment descriptions, which are useful to the

kernel when it is loading a new address space

• the ELF file identifies the (virtual) address of the program’s first instruction

• the ELF file also contains lots of other information (e.g., section descriptors,

symbol tables) that is useful to compilers, linkers, debuggers, loaders and other

tools used to build programs

CS350 Operating Systems Fall 2013

Virtual Memory 32

Address Space Segments in ELF Files

• The ELF file contains a header describing the segments and segmentimages.

• Each ELF segment describes a contiguous region of the virtual address space.

• The header includes an entry for each segment which describes:

– the virtual address of the start of the segment

– the length of the segment in the virtual address space

– the location of the start of the segment image in the ELF file (if present)

– the length of the segment image in the ELF file (if present)

• the image is an exact copy of the binary data that should be loaded into the
specified portion of the virtual address space

• the image may be smaller than the address space segment, in which case the rest
of the address space segment is expected to be zero-filled

To initialize an address space, the kernel copies images fromthe ELF file to

the specifed portions of the virtual address space

CS350 Operating Systems Fall 2013

87

Virtual Memory 33

ELF Files and OS/161

• OS/161’sdumbvm implementation assumes that an ELF file contains two

segments:

– a text segment, containing the program code and any read-only data

– a data segment, containing any other global program data

• the ELF file does not describe the stack (why not?)

• dumbvm creates astack segmentfor each process. It is 12 pages long, ending at

virtual address0x7fffffff

Look atkern/syscall/loadelf.c to see how OS/161 loads segments

from ELF files

CS350 Operating Systems Fall 2013

Virtual Memory 34

ELF Sections and Segments

• In the ELF file, a program’s code and data are grouped together intosections,

based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data

• not all of these sections are present in every ELF file

• normally

– the.text and.rodata sections together form the text segment

– the.data, .bss and.sbss sections together form the data segement

• space forlocal program variables is allocated on the stack when the program

runs

CS350 Operating Systems Fall 2013

88

Virtual Memory 35

The user/uw-testbin/segments.c Example Program (1 of 2)

#include <unistd.h>

#define N (200)

int x = 0xdeadbeef;

int t1;

int t2;

int t3;

int array[4096];

char const *str = "Hello World\n";

const int z = 0xabcddcba;

struct example {

int ypos;

int xpos;

};

CS350 Operating Systems Fall 2013

Virtual Memory 36

The user/uw-testbin/segments.c Example Program (2 of 2)

int

main()

{

int count = 0;

const int value = 1;

t1 = N;

t2 = 2;

count = x + t1;

t2 = z + t2 + value;

reboot(RB_POWEROFF);

return 0; /* avoid compiler warnings */

}

CS350 Operating Systems Fall 2013

89

Virtual Memory 37

ELF Sections for the Example Program

Section Headers:
[Nr] Name Type Addr Off Size Flg
[0] NULL 00000000 000000 000000
[1] .text PROGBITS 00400000 010000 000200 AX
[2] .rodata PROGBITS 00400200 010200 000020 A
[3] .reginfo MIPS_REGINFO 00400220 010220 000018 A
[4] .data PROGBITS 10000000 020000 000010 WA
[5] .sbss NOBITS 10000010 020010 000014 WAp
[6] .bss NOBITS 10000030 020010 004000 WA
...
Flags: W (write), A (alloc), X (execute), p (processor specific)

Size = number of bytes (e.g., .text is 0x200 = 512 bytes
Off = offset into the ELF file
Addr = virtual address

Thecs350-readelf program can be used to inspect OS/161 MIPS ELF
files: cs350-readelf -a segments

CS350 Operating Systems Fall 2013

Virtual Memory 38

ELF Segments for the Example Program

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
REGINFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R 0x4
LOAD 0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000
LOAD 0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

• segment info, like section info, can be inspected using thecs350-readelf
program

• the REGINFO section is not used

• the first LOAD segment includes the .text and .rodata sections

• the second LOAD segment includes .data, .sbss, and .bss

CS350 Operating Systems Fall 2013

90

Virtual Memory 39

Contents of the Example Program’s.text Section

Contents of section .text:

400000 3c1c1001 279c8000 2408fff8 03a8e824 <...’...$......$

...

Decoding 3c1c1001 to determine instruction

0x3c1c1001 = binary 111100000111000001000000000001

0011 1100 0001 1100 0001 0000 0000 0001

instr | rs | rt | immediate

6 bits | 5 bits| 5 bits| 16 bits

001111 | 00000 | 11100 | 0001 0000 0000 0001

LUI | 0 | reg 28| 0x1001

LUI | unused| reg 28| 0x1001

Load upper immediate into rt (register target)

lui gp, 0x1001

Thecs350-objdump program can be used to inspect OS/161 MIPS ELF

file section contents:cs350-objdump -s segments

CS350 Operating Systems Fall 2013

Virtual Memory 40

Contents of the Example Program’s.rodata Section

Contents of section .rodata:

400200 abcddcba 00000000 00000000 00000000

400210 48656c6c 6f20576f 726c640a 00000000 Hello World.....

...

const int z = 0xabcddcba

If compiler doesn’t prevent z from being written,

then the hardware could.

0x48 = ’H’ 0x65 = ’e’ 0x0a = ’\n’ 0x00 = ’\0’

The.rodata section contains the “Hello World” string literal and the con-

stant integer variablez.

CS350 Operating Systems Fall 2013

91

Virtual Memory 41

Contents of the Example Program’s.data Section

Contents of section .data:

10000000 deadbeef 00400210 00000000 00000000@..........

...

Size = 0x10 bytes = 16 bytes (padding for alignment)

int x = deadbeef (4 bytes)

char const *str = "Hello World\n"; (4 bytes)

address of str = 0x10000004

value stored in str = 0x00400210.

NOTE: this is the address of the start

of the string literal in the .rodata section

The.data section contains the initialized global variablesstr andx.

CS350 Operating Systems Fall 2013

Virtual Memory 42

Contents of the Example Program’s.bss and .sbss Sections

...
10000000 D x
10000004 D str
10000010 S t3 ## S indicates sbss section
10000014 S t2
10000018 S t1
1000001c S errno
10000020 S __argv
10000030 B array ## B indicates bss section
10004030 A _end
10008000 A _gp

Thet1, t2, andt3 variables are in the.sbss section. Thearray variable
is in the.bss section. There are no values for these variables in the ELF file,
as they are uninitialized. Thecs350-nm program can be used to inspect
symbols defined in ELF files:cs350-nm -n <filename>, in this case
cs350-nm -n segments.

CS350 Operating Systems Fall 2013

92

Virtual Memory 43

System Call Interface for Virtual Memory Management

• much memory allocation is implicit, e.g.:

– allocation for address space of new process

– implicit stack growth on overflow

• OS may support explicit requests to grow/shrink address space, e.g., Unixbrk

system call.

• shared virtual memory (simplified Solaris example):

Create: shmid = shmget(key,size)

Attach: vaddr = shmat(shmid, vaddr)

Detach: shmdt(vaddr)

Delete: shmctl(shmid,IPC RMID)

CS350 Operating Systems Fall 2013

Virtual Memory 44

Exploiting Secondary Storage

Goals:

• Allow virtual address spaces that are larger than the physical address space.

• Allow greater multiprogramming levels by using less of the available (primary)

memory for each process.

Method:

• Allow pages (or segments) from the virtual address space to be stored in

secondary memory, as well as primary memory.

• Move pages (or segments) between secondary and primary memory so that they

are in primary memory when they are needed.

CS350 Operating Systems Fall 2013

93

Virtual Memory 45

The Memory Hierarchy

BANDWIDTH (bytes/sec)

L1 Cache

(disk)
memory

secondary

10 9primary
memory

L2 Cache 10 6

10 12

10 4

SIZE (bytes)

10 8

10 6

CS350 Operating Systems Fall 2013

Virtual Memory 46

Large Virtual Address Spaces

• Virtual memory allows for very large virtual address spaces, and very large

virtual address spaces require large page tables.

• example:248 byte virtual address space,8 Kbyte (213 byte) pages,4 byte page

table entries means

248

213
22 = 237 bytes per page table

• page tables for large address spaces may be very large, and

– they must be in memory, and

– they must be physically contiguous

• some solutions:

– multi-level page tables - page the page tables

– inverted page tables

CS350 Operating Systems Fall 2013

94

Virtual Memory 47

Two-Level Paging

m bits

register
page table base

frame # offsetpage # offsetpage #

physical address (m bits)

virtual address (v bits)

level 1

level 2

page table

page tables

CS350 Operating Systems Fall 2013

Virtual Memory 48

Inverted Page Tables

• A normal page table maps virtual pages to physical frames. An inverted page

table maps physical frames to virtual pages.

• Other key differences between normal and inverted page tables:

– there is only one inverted page table, not one table per process

– entries in an inverted page table must include a process identifier

• An inverted page table only specifies the location of virtual pages that are

located in memory. Some other mechanism (e.g., regular page tables) must be

used to locate pages that are not in memory.

CS350 Operating Systems Fall 2013

95

Virtual Memory 49

Paging Policies

When to Page?:
Demand pagingbrings pages into memory when they are used. Alternatively,

the OS can attempt to guess which pages will be used, andprefetchthem.

What to Replace?:
Unless there are unused frames, one page must be replaced for each page that is

loaded into memory. Areplacement policyspecifies how to determine which

page to replace.

Similar issues arise if (pure) segmentation is used, only theunit of data trans-

fer is segments rather than pages. Since segments may vary in size, segmen-

tation also requires aplacement policy, which specifies where, in memory, a

newly-fetched segment should be placed.

CS350 Operating Systems Fall 2013

Virtual Memory 50

Global vs. Local Page Replacement

• When the system’s page reference string is generated by more than one process,

should the replacement policy take this into account?

Global Policy: A global policy is applied to all in-memory pages, regardless of

the process to which each one “belongs”. A page requested by process X

may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to

processes according to some memory allocation policy. A replacement

policy is then applied separately to each process’s allocated space. A page

requested by process X replaces another page that “belongs” to process X.

CS350 Operating Systems Fall 2013

96

Virtual Memory 51

Paging Mechanism

• A valid bit (V) in each page table entry is used to track which pages are in
(primary) memory, and which are not.

V = 1: valid entry which can be used for translation

V = 0: invalid entry. If the MMU encounters an invalid page table entry, it
raises apage faultexception.

• To handle a page fault exception, the operating system must:

– Determine which page table entry caused the exception. (In SYS/161, and in
real MIPS processors, MMU puts the offending virtual address into a
register on the CP0 co-processor (register 8/c0vaddr/BadVaddr). The kernel
can read that register.

– Ensure that that page is brought into memory.

On return from the exception handler, the instruction that resulted in the page
fault will be retried.

• If (pure) segmentation is being used, there will be a valid bit in each segment
table entry to indicate whether the segment is in memory.

CS350 Operating Systems Fall 2013

Virtual Memory 52

A Simple Replacement Policy: FIFO

• the FIFO policy: replace the page that has been in memory the longest

• a three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x

CS350 Operating Systems Fall 2013

97

Virtual Memory 53

Optimal Page Replacement

• There is an optimal page replacement policy for demand paging.

• The OPT policy: replace the page that will not be referenced for the longest

time.

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a a a a c c c

Frame 2 b b b b b b b b b d d

Frame 3 c d d d e e e e e e

Fault ? x x x x x x x

• OPT requires knowledge of the future.

CS350 Operating Systems Fall 2013

Virtual Memory 54

Other Replacement Policies

• FIFO is simple, but it does not consider:

Frequency of Use: how often a page has been used?

Recency of Use:when was a page last used?

Cleanliness: has the page been changed while it is in memory?

• Theprinciple of localitysuggests that usage ought to be considered in a

replacement decision.

• Cleanliness may be worth considering for performance reasons.

CS350 Operating Systems Fall 2013

98

Virtual Memory 55

Locality

• Locality is a property of the page reference string. In other words, it is a

property of programs themselves.

• Temporal localitysays that pages that have been used recently are likely to be

used again.

• Spatial localitysays that pages “close” to those that have been used are likely to

be used next.

In practice, page reference strings exhibit strong locality. Why?

CS350 Operating Systems Fall 2013

Virtual Memory 56

Frequency-based Page Replacement

• Counting references to pages can be used as the basis for page replacement

decisions.

• Example: LFU (Least Frequently Used)

Replace the page with the smallest reference count.

• Any frequency-based policy requires a reference counting mechanism, e.g.,

MMU increments a counter each time an in-memory page is referenced.

• Pure frequency-based policies have several potential drawbacks:

– Old references are never forgotten. This can be addressed by periodically

reducing the reference count of every in-memory page.

– Freshly loaded pages have small reference counts and are likely victims -

ignores temporal locality.

CS350 Operating Systems Fall 2013

99

Virtual Memory 57

Least Recently Used (LRU) Page Replacement

• LRU is based on the principle of temporal locality: replace the page that has not

been used for the longest time

• To implement LRU, it is necessary to track each page’s recency of use. For

example: maintain a list of in-memory pages, and move a page to the front of

the list when it is used.

• Although LRU and variants have many applications, LRU is often considered to

be impractical for use as a replacement policy in virtual memory systems. Why?

CS350 Operating Systems Fall 2013

Virtual Memory 58

Least Recently Used: LRU

• the same three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e c c c

Frame 2 b b b a a a a a a d d

Frame 3 c c c b b b b b b e

Fault ? x x x x x x x x x x

CS350 Operating Systems Fall 2013

100

Virtual Memory 59

The “Use” Bit

• A use bit(or reference bit) is a bit found in each TLB entry that:

– is set by the MMU each time the page is used, i.e., each time the MMU

translates a virtual address on that page

– can be read and modified by the operating system

– operating system copies use information into page table

• The use bit provides a small amount of efficiently-maintainable usage

information that can be exploited by a page replacement algorithm.

Entries in the MIPS TLB do not include a use bit.

CS350 Operating Systems Fall 2013

Virtual Memory 60

What if the MMU Does Not Provide a “Use” Bit?

• the kernel can emulate the “use” bit, at the cost of extra exceptions

1. When a page is loaded into memory, mark it asinvalid (even though it as

been loaded) and set its simulated “use” bit to false.

2. If a program attempts to access the page, an exception will occur.

3. In its exception handler, the OS sets the page’s simulated “use” bit to “true”

and marks the pagevalid so that further accesses do not cause exceptions.

• This technique requires that the OS maintain extra bits of information for each

page:

1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory

CS350 Operating Systems Fall 2013

101

Virtual Memory 61

The Clock Replacement Algorithm

• The clock algorithm (also known as “second chance”) is one of the simplest

algorithms that exploits the use bit.

• Clock is identical to FIFO, except that a page is “skipped” if its use bit is set.

• The clock algorithm can be visualized as a victim pointer that cycles through

the page frames. The pointer moves whenever a replacement is necessary:

while use bit of victim is set

clear use bit of victim

victim = (victim + 1) % num_frames

choose victim for replacement

victim = (victim + 1) % num_frames

CS350 Operating Systems Fall 2013

Virtual Memory 62

Page Cleanliness: the “Modified” Bit

• A page ismodified(sometimes called dirty) if it has been changed since it was

loaded into memory.

• A modified page is more costly to replace than a clean page. (Why?)

• The MMU identifies modified pages by setting amodified bitin the TLB entry

when the contents of the page change.

• Operating system clears the modified bit when it cleans the page

• The modified bit potentially has two roles:

– Indicates which pages need to be cleaned.

– Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.

CS350 Operating Systems Fall 2013

102

Virtual Memory 63

What if the MMU Does Not Provide a “Modified” Bit?

• Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark it asread-only(even if it is

actually writeable) and set its simulated “modified” bit to false.

2. If a program attempts to modify the page, a protection exception will occur.

3. In its exception handler, if the page is supposed to be writeable, the OS sets

the page’s simulated “modified” bit to “true” and marks the page as

writeable.

• This technique requires that the OS maintain two extra bits of information for

each page:

1. the simulated “modified” bit

2. a “writeable” bit to indicate whether the page is supposed to be writeable

CS350 Operating Systems Fall 2013

Virtual Memory 64

Enhanced Second Chance Replacement Algorithm

• Classify pages according to their use and modified bits:

(0,0): not recently used, clean.

(0,1): not recently used, modified.

(1,0): recently used, clean

(1,1): recently used, modified

• Algorithm:

1. Sweep once looking for (0,0) page. Don’t clear use bits while looking.

2. If none found, look for (0,1) page, this time clearing “use” bits for bypassed

frames.

3. If step 2 fails, all use bits will be zero, repeat from step 1

(guaranteed to find a page).

CS350 Operating Systems Fall 2013

103

Virtual Memory 65

Page Cleaning

• A modified page must be cleaned before it can be replaced, otherwise changes

on that page will be lost.

• Cleaninga page means copying the page to secondary storage.

• Cleaning is distinct from replacement.

• Page cleaning may besynchronousor asynchronous:

synchronous cleaning:happens at the time the page is replaced, during page

fault handling. Page is first cleaned by copying it to secondary storage. Then

a new page is brought in to replace it.

asynchronous cleaning:happens before a page is replaced, so that page fault

handling can be faster.

– asynchronous cleaning may be implemented by dedicated OSpage

cleaning threadsthat sweep through the in-memory pages cleaning

modified pages that they encounter.

CS350 Operating Systems Fall 2013

Virtual Memory 66

Belady’s Anomaly

• FIFO replacement, 4 frames

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a e e e e d d

Frame 2 b b b b b b a a a a e

Frame 3 c c c c c c b b b b

Frame 4 d d d d d d c c c

Fault? x x x x x x x x x x

• FIFO example on Slide 52 with same reference string had 3 frames and only 9

faults.

More memory does not necessarily mean fewer page faults.

CS350 Operating Systems Fall 2013

104

Virtual Memory 67

Stack Policies

• LetB(m, t) represent the set of pages in the system withm frames of memory,

at timet, under some given replacement policy, for some given reference string.

• A replacement policy is called astack policyif, for all reference strings, allm

and allt:

B(m, t) ⊆ B(m+ 1, t)

• If a replacement algorithm imposes a total order, independent of the number of

frames (i.e., memory size), on the pages and it replaces the largest (or smallest)

page according to that order, then it satisfies the definition of a stack policy.

• Examples: LRU is a stack algorithm. FIFO and CLOCK are not stack

algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.

CS350 Operating Systems Fall 2013

Virtual Memory 68

Prefetching

• Prefetching means moving virtual pages into memory before they are needed,

i.e., before a page fault results.

• The goal of prefetching islatency hiding: do the work of bringing a page into

memory in advance, not while a process is waiting.

• To prefetch, the operating system must guess which pages will be needed.

• Hazards of prefetching:

– guessing wrong means the work that was done to prefetch the page was

wasted

– guessing wrong means that some other potentially useful page has been

replaced by a page that is not used

• most common form of prefetching is simple sequential prefetching: if a process

uses pagex, prefetch pagex+ 1.

• sequential prefetching exploits spatial locality of reference

CS350 Operating Systems Fall 2013

105

Virtual Memory 69

Page Size

• the virtual memory page size must be understood by both the kernel and the

MMU

• some MMUs have support for a configurable page size

• advantages of larger pages

– smaller page tables

– largerTLB footprint

– more efficient I/O

• disadvantages of larger pages

– greater internal fragmentation

– increased chance of paging in unnecessary data

OS/161 on the MIPS uses a 4KB virtual memory page size.

CS350 Operating Systems Fall 2013

Virtual Memory 70

How Much Physical Memory Does a Process Need?

• Principle of locality suggests that some portions of the process’s virtual address

space are more likely to be referenced than others.

• A refinement of this principle is theworking set modelof process reference

behaviour.

• According to the working set model, at any given time some portion of a

program’s address space will be heavily used and the remainder will not be.

The heavily used portion of the address space is called theworking setof the

process.

• The working set of a process may change over time.

• Theresident setof a process is the set of pages that are located in memory.

According to the working set model, if a process’s resident set includes its

working set, it will rarely page fault.

CS350 Operating Systems Fall 2013

106

Virtual Memory 71

Resident Set Sizes (Example)

PID VSZ RSS COMMAND

805 13940 5956 /usr/bin/gnome-session

831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11

838 6964 2292 gnome-smproxy

840 14720 5008 gnome-settings-daemon

848 8412 3888 sawfish

851 34980 7544 nautilus

853 19804 14208 gnome-panel

857 9656 2672 gpilotd

867 4608 1252 gnome-name-service

CS350 Operating Systems Fall 2013

Virtual Memory 72

Refining the Working Set Model

• DefineWS(t,∆) to be the set of pages referenced by a given process during the

time interval(t−∆, t). WS(t,∆) is the working set of the process at timet.

• Define|WS(t,∆)| to be the size ofWS(t,∆), i.e., the number ofdistinct

pages referenced by the process.

• If the operating system could trackWS(t,∆), it could:

– use|WS(t,∆)| to determine the number of frames to allocate to the process

under a local page replacement policy

– useWS(t,∆) directly to implement a working-set based page replacement

policy: any page that is no longer in the working set is a candidate for

replacement

CS350 Operating Systems Fall 2013

107

Virtual Memory 73

Page Fault Frequency

• A more direct way to allocate memory to processes is to measure theirpage

fault frequencies- the number of page faults they generate per unit time.

• If a process’s page fault frequency is too high, it needs more memory. If it is

low, it may be able to surrender memory.

• The working set model suggests that a page fault frequency plot should have a

sharp “knee”.

CS350 Operating Systems Fall 2013

Virtual Memory 74

A Page Fault Frequency Plot

thresholds

page fault frequency curve
process
page fault
frequency

low

high

manyfew

frames allocated to process

CS350 Operating Systems Fall 2013

108

Virtual Memory 75

Thrashing and Load Control

• What is a good multiprogramming level?

– If too low: resources are idle

– If too high: too few resources per process

• A system that is spending too much time paging is said to bethrashing.

Thrashing occurs when there are too many processes competing for the

available memory.

• Thrashing can be cured by load shedding, e.g.,

– Killing processes (not nice)

– Suspending andswapping outprocesses (nicer)

CS350 Operating Systems Fall 2013

Virtual Memory 76

Swapping Out Processes

• Swapping a process out means removing all of its pages from memory, or

marking them so that they will be removed by the normal page replacement

process. Suspending a process ensures that it is not runnable while it is swapped

out.

• Which process(es) to suspend?

– low priority processes

– blocked processes

– large processes (lots of space freed) or small processes (easier to reload)

• There must also be a policy for making suspended processes ready when system

load has decreased.

CS350 Operating Systems Fall 2013

109

Processor Scheduling 1

The Nature of Program Executions

• A running thread can be modeled as alternating series ofCPU burstsandI/O

bursts

– during a CPU burst, a thread is executing instructions

– during an I/O burst, a thread is waiting for an I/O operation to be performed

and is not executing instructions

CS350 Operating Systems Fall 2013

Processor Scheduling 2

Preemptive vs. Non-Preemptive

• A non-preemptivescheduler runs only when the running thread gives up the

processor through its own actions, e.g.,

– the thread terminates

– the thread blocks because of an I/O or synchronization operation

– the thread performs a Yield system call (if one is provided by the operating

system)

• A preemptivescheduler may, in addition, force a running thread to stop running

– typically, a preemptive scheduler will be invoked periodically by a timer

interrupt handler, as well as in the circumstances listed above

– a running thread that is preempted is moved to the ready state

CS350 Operating Systems Fall 2013

110

Processor Scheduling 3

FCFS and Round-Robin Scheduling

First-Come, First-Served (FCFS):

• non-preemptive - each thread runs until it blocks or terminates

• FIFO ready queue

Round-Robin:

• preemptive version of FCFS

• running thread is preempted after a fixed time quantum, if it has not already

blocked

• preempted thread goes to the end of the FIFO ready queue

CS350 Operating Systems Fall 2013

Processor Scheduling 4

Shortest Job First (SJF) Scheduling

• non-preemptive

• ready threads are scheduled according to the length of their next CPU burst -

thread with the shortest burst goes first

• SJF minimizes average waiting time, but can lead to starvation

• SJF requires knowledge of CPU burst lengths

– Simplest approach is to estimate next burst length of each thread based on

previous burst length(s). For example, exponential average considers all

previous burst lengths, but weights recent ones most heavily:

Bi+1 = αbi + (1− α)Bi

whereBi is the predicted length of theith CPU burst, andbi is its actual

length, and0 ≤ α ≤ 1.

• Shortest Remaining Time First is a preemptive variant of SJF. Preemption may

occur when a new thread enters the ready queue.

CS350 Operating Systems Fall 2013

111

Processor Scheduling 5

FCFS Gantt Chart Example

20
Pb = 8Pa = 5Initial ready queue:

Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16
Pc = 3

CS350 Operating Systems Fall 2013

Processor Scheduling 6

Round Robin Example

Quantum = 2
Pb = 8Pa = 5Initial ready queue:

Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16 20
Pc = 3

CS350 Operating Systems Fall 2013

112

Processor Scheduling 7

SJF Example

20
Pb = 8Pa = 5Initial ready queue:

Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16
Pc = 3

CS350 Operating Systems Fall 2013

Processor Scheduling 8

SRTF Example

20
Pb = 8Pa = 5Initial ready queue:

Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16
Pc = 3

CS350 Operating Systems Fall 2013

113

Processor Scheduling 9

Highest Response Ratio Next

• non-preemptive

• response ratio is defined for each ready thread as:

w + b

b

whereb is the estimated CPU burst time andw is the actual waiting time

• scheduler chooses the thread with the highest response ratio (choose smallestb

in case of a tie)

• HRRN is an example of a heuristic that blends SJF and FCFS

CS350 Operating Systems Fall 2013

Processor Scheduling 10

HRRN Example

20
Pb = 8Pa = 5Initial ready queue:

Thread Pd (=4) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16
Pc = 3

CS350 Operating Systems Fall 2013

114

Processor Scheduling 11

Prioritization

• ascheduler may be asked to take process or thread priorities into account

• for example, priorities could be based on

– user classification

– application classification

– application specification

(e.g., Linuxsetpriority/sched setscheduler)

• scheduler can:

– always choose higher priority threads over lower priority threads

– use any scheduling heuristic to schedule threads of equal priority

• low priority threads risk starvation. If this is not desired, scheduler must have a

mechanism for elevating the priority of low priority threads that have waited a

long time

CS350 Operating Systems Fall 2013

Processor Scheduling 12

Multilevel Feedback Queues

• gives priority to interactive threads (those with short CPU bursts)

• scheduler maintains several ready queues

• scheduler never chooses a thread in ready queuei if there are threads in any

ready queuej < i.

• threads in ready queuei use quantumqi, andqi < qj if i < j

• newly ready threads go into ready queue0

• a leveli thread that is preempted goes into the leveli+ 1 ready queue

CS350 Operating Systems Fall 2013

115

Processor Scheduling 13

3 Level Feedback Queue State Diagram

unblock

blocked

ready(0) run(0)

ready(1)

ready(2)

run(1)

run(2)

block

block

block

preempt

preempt

preempt

dispatch

dispatch

dispatch

CS350 Operating Systems Fall 2013

Processor Scheduling 14

Suspending Processes

• suspension prevents a process from running for an extended period of time,

until the kernel decides toresumeit.

• usually because a resource, especially memory, is overloaded

• kernel releases suspended process’s resources (e.g., memory)

• operating system may also provide mechanisms for applications or users to

request suspension/resumption of processes

CS350 Operating Systems Fall 2013

116

Processor Scheduling 15

Scheduling States Including Suspend/Resume

resume

ready running

blocked

suspended/
ready

suspended/
blocked

dispatch

quantum expires

suspend

resume

suspend

suspend

CS350 Operating Systems Fall 2013

117

I/O 1

Devices and Device Controllers

• network interface

• graphics adapter

• secondary storage (disks, SSD, flash) and storage controllers

• serial (e.g., mouse, keyboard)

• sound

• co-processors

• . . .

CS350 Operating Systems Fall 2013

I/O 2

Bus Architecture Example

controller

keyboard mouse

CPU

MemoryBridge

Bridge

Modem Sound

Graphics

Cache

PCI bus

ISA bus

USB
controller

SATA

CS350 Operating Systems Fall 2013

118

I/O 3

Simplified Bus Architecture

disk controller

K: device controller

Key

CPU M K K K

other controllers

M: memory

CS350 Operating Systems Fall 2013

I/O 4

Sys/161 LAMEbus Devices

• LAMEbus controller

• timer/clock- current time, timer, beep

• disk drive - persistent storage

• serial console - character input/output

• text screen - character-oriented graphics

• network interface - packet input/output

• emulator file system - simulation-specific

• hardware trace control - simulation-specific

• random number generator

CS350 Operating Systems Fall 2013

119

I/O 5

Device Interactions

• device registers

– command, status, and data registers

– CPU accesses register via:

∗ special I/O instructions

∗ memory mapping

• interrupts

– used by device for asynchronous notification (e.g., of request completion)

– handled by interrupt handlers in the operating system

CS350 Operating Systems Fall 2013

I/O 6

Example: LAMEbus timer device registers

Offset Size Type Description

0 4 status current time (seconds)

4 4 status current time (nanoseconds)

8 4 command restart-on-expiry (auto-restart countdown?)

12 4 status and command interrupt (reading clears)

16 4 status and command countdown time (microseconds)

20 4 command speaker (causes beeps)

Sys/161 uses memory-mapping. Each device’s registers are mapped into the

physical address spaceof the MIPS processor.

CS350 Operating Systems Fall 2013

120

I/O 7

Example: LAMEbus disk controller

Offset Size Type Description

0 4 status number of sectors

4 4 status and command status

8 4 command sector number

12 4 status rotational speed (RPM)

32768 512 data transfer buffer

CS350 Operating Systems Fall 2013

I/O 8

MIPS/OS161 Physical Address Space

RAM

devices: 0x1fe00000 − 0x1fffffff

ROM: 0x1fc00000 − 0x1fdfffff

64 KB device "slot"

0x00000000 0xffffffff

0x1fe00000 0x1fffffff

Each device is assigned to one of 32 64KB device “slots”. A device’s regis-

ters and data buffers are memory-mapped into its assigned slot.

CS350 Operating Systems Fall 2013

121

I/O 9

Device Control Example: Controlling the Timer

/* Registers (offsets within the device slot) */

#define LT_REG_SEC 0 /* time of day: seconds */

#define LT_REG_NSEC 4 /* time of day: nanoseconds */

#define LT_REG_ROE 8 /* Restart On countdown-timer Expiry flag *
#define LT_REG_IRQ 12 /* Interrupt status register */

#define LT_REG_COUNT 16 /* Time for countdown timer (usec) */

#define LT_REG_SPKR 20 /* Beep control */

/* Get the number of seconds from the lamebus timer */

/* lt->lt_buspos is the slot number of the target device */

secs = bus_read_register(lt->lt_bus, lt->lt_buspos,

LT_REG_SEC);

/* Get the timer to beep. Doesn’t matter what value is sent */

bus_write_register(lt->lt_bus, lt->lt_buspos,

LT_REG_SPKR, 440);

CS350 Operating Systems Fall 2013

I/O 10

Device Control Example: Address Calculations

/* LAMEbus mapping size per slot */
#define LB_SLOT_SIZE 65536
#define MIPS_KSEG1 0xa0000000
#define LB_BASEADDR (MIPS_KSEG1 + 0x1fe00000)

/* Compute the virtual address of the specified offset */
/* into the specified device slot */
void *
lamebus_map_area(struct lamebus_softc *bus, int slot,

u_int32_t offset)
{

u_int32_t address;
(void)bus; // not needed

assert(slot>=0 && slot<LB_NSLOTS);
address = LB_BASEADDR + slot*LB_SLOT_SIZE + offset;
return (void *)address;

}

CS350 Operating Systems Fall 2013

122

I/O 11

Device Control Example: Commanding the Device

/* FROM: kern/arch/mips/mips/lamebus_mips.c */
/* Read 32-bit register from a LAMEbus device. */
u_int32_t
lamebus_read_register(struct lamebus_softc *bus,

int slot, u_int32_t offset)
{

u_int32_t *ptr = lamebus_map_area(bus, slot, offset);
return *ptr;

}

/* Write a 32-bit register of a LAMEbus device. */
void
lamebus_write_register(struct lamebus_softc *bus,

int slot, u_int32_t offset, u_int32_t val)
{

u_int32_t *ptr = lamebus_map_area(bus, slot, offset);

*ptr = val;
}

CS350 Operating Systems Fall 2013

I/O 12

Device Data Transfer

• Sometimes, a device operation will involve a large chunk of data- much larger

than can be moved with a single instruction. Example: reading a block of data

from a disk.

• Devices may have data buffers for such data - but how to get the data between

the device and memory?

• If the data buffer is memory-mapped, the kernel can move the data iteratively,

one word at a time. This is calledprogram-controlled I/O.

• Program controlled I/O is simple, but it means that the CPU isbusy executing

kernel codewhile the data is being transferred.

• The alternative is called Direct Memory Access (DMA). During a DMA data

transfer, the CPU isnot busyand is free to do something else, e.g., run an

application.

Sys/161 LAMEbus devices do program-controlled I/O.

CS350 Operating Systems Fall 2013

123

I/O 13

Direct Memory Access (DMA)

• DMA is used for block data transfers between devices (e.g., a disk controller)

and memory

• Under DMA, the CPU initiates the data transfer and is notified when the transfer

is finished. However, the device (not the CPU) controls the transfer itself.

3

CPU M K K
K

(disk)

1 2

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU

CS350 Operating Systems Fall 2013

I/O 14

Applications and Devices

• interaction with devices is normally accomplished by device drivers in the OS,

so that the OS can control how the devices are used

• applications see a simplified view of devices through a system call interface

(e.g., block vs. character devices in Unix)

– the OS may provide a system call interface that permits low level interaction

between application programs and a device

• operating system oftenbuffersdata that is moving between devices and

application programs’ address spaces

– benefits: solve timing, size mismatch problems

– drawback: performance

CS350 Operating Systems Fall 2013

124

I/O 15

Logical View of a Disk Drive

• disk is an array of numbered blocks (or sectors)

• each block is the same size (e.g., 512 bytes)

• blocks are the unit of transfer between the disk and memory

– typically, one or more contiguous blocks can be transferred in a single

operation

• storage isnon-volatile, i.e., data persists even when the device is without power

CS350 Operating Systems Fall 2013

I/O 16

A Disk Platter’s Surface

Track

Sector

CS350 Operating Systems Fall 2013

125

I/O 17

Physical Structure of a Disk Drive

Cylinder

Shaft

Track

Sector

CS350 Operating Systems Fall 2013

I/O 18

Simplified Cost Model for Disk Block Transfer

• moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder

rotational latency: wait until the desired sectors spin to the read/write heads

transfer time: wait while the desired sectors spin past the read/write heads

• request service time is the sum of seek time, rotational latency, and transfer time

tservice = tseek + trot + ttransfer

• note that there are other overheads but they are typically small relative to these

three

CS350 Operating Systems Fall 2013

126

I/O 19

Rotational Latency and Transfer Time

• rotational latency depends on the rotational speed of the disk

• if the disk spins atω rotations per second:

0 ≤ trot ≤
1

ω

• expected rotational latency:

t̄rot =
1

2ω

• transfer time depends on the rotational speed and on the amount of data

transferred

• if k sectors are to be transferred and there areT sectors per track:

ttransfer =
k

Tω

CS350 Operating Systems Fall 2013

I/O 20

Seek Time

• seek time depends on the speed of the arm on which the read/write heads are

mounted.

• a simple linear seek time model:

– tmaxseek is the time required to move the read/write heads from the

innermost cylinder to the outermost cylinder

– C is the total number of cylinders

• if k is the requiredseek distance(k > 0):

tseek(k) =
k

C
tmaxseek

CS350 Operating Systems Fall 2013

127

I/O 21

Performance Implications of Disk Characteristics

• larger transfers to/from a disk device aremore efficientthan smaller ones. That

is, the cost (time) per byte is smaller for larger transfers. (Why?)

• sequential I/O is faster than non-sequential I/O

– sequential I/O operations eliminate the need for (most) seeks

– disks use other techniques, liketrack buffering, to reduce the cost of

sequential I/O even more

CS350 Operating Systems Fall 2013

I/O 22

Disk Head Scheduling

• goal: reduce seek times by controlling the order in which requests are serviced

• disk head scheduling may be performed by the controller, by the operating

system, or both

• for disk head scheduling to be effective, there must be a queue of outstanding

disk requests (otherwise there is nothing to reorder)

• an on-line approach is required: the disk request queue is not static

CS350 Operating Systems Fall 2013

128

I/O 23

FCFS Disk Head Scheduling

• handle requests in the order in which they arrive

• fair and simple, but no optimization of seek times

150 200100501

104

37 122 14 130 65 70

head

104

14 37 53 65 70 122 130 183

arrival order: 183

CS350 Operating Systems Fall 2013

I/O 24

Shortest Seek Time First (SSTF)

• choose closest request (a greedy approach)

• seek times are reduced, but requests may starve

150 200100501

104 37 122 14 130 65 70

head

10414 37 53 65 70 122 130 183

arrival order: 183

CS350 Operating Systems Fall 2013

129

I/O 25

SCAN and LOOK

• LOOK is the commonly-implemented variant of SCAN. Also known as the

“elevator” algorithm.

• Under LOOK, the disk head moves in one direction until there are no more

requests in front of it, then reverses direction.

• seek time reduction without starvation

• SCAN is like LOOK, except the read/write heads always move all the way to

the edge of the disk in each direction.

CS350 Operating Systems Fall 2013

I/O 26

SCAN Example

150 200100501

104

183 37 122 14 130 65 70

head

104

14 37 53 65 70 122 130 183

arrival order:

CS350 Operating Systems Fall 2013

130

I/O 27

Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK)

• C-LOOK and C-SCAN are variants of LOOK and SCAN

• Under C-LOOK, the disk head moves in one direction until there are no more

requests in front of it, then it jumps back and begins another scan in the same

direction as the first.

• C-LOOK avoids bias against “edge” cylinders

CS350 Operating Systems Fall 2013

I/O 28

C-LOOK Example

150 200100501

104

37 122 14 130 65 70

head

104

14 37 53 65 70 122 130 183

arrival order: 183

CS350 Operating Systems Fall 2013

131

File Systems 1

Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– alternatively, a file may have some internal structure, e.g., a file may consist

of sequence of numbered records

– file may change size over time

– file has associated meta-data (attributes), in addition to the file name

∗ examples: owner, access controls, file type, creation and access

timestamps

• file system: a collection of files which share a common name space

– allows files to be created, destroyed, renamed,. . .

CS350 Operating Systems Fall 2013

File Systems 2

File Interface

• open, close

– open returns a file identifier (or handle or descriptor), which is used in

subsequent operations to identify the file. (Why is this done?)

• read, write

– must specify which file to read, which part of the file to read, and where to

put the data that has been read (similar for write).

– often, file position is implicit (why?)

• seek

• get/set file attributes, e.g., Unixfstat, chmod

CS350 Operating Systems Fall 2013

132

File Systems 3

File Read

fileoffset (implicit)

virtual address
 space

length

vaddr

length

file

read(fileID, vaddr, length)

CS350 Operating Systems Fall 2013

File Systems 4

File Position

• may be associated with the file, with a process, or with a file descriptor (Unix

style)

• read and write operations

– start from the current file position

– update the current file position

• this makes sequential file I/O easy for an application to request

• for non-sequential (random) file I/O, use:

– seek, to adjust file position before reading or writing

– a positioned read or write operation, e.g., Unixpread, pwrite:

pread(fileId,vaddr,length,filePosition)

CS350 Operating Systems Fall 2013

133

File Systems 5

Sequential File Reading Example (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first100 ∗ 512 bytes of a file,512 bytes at a time.

CS350 Operating Systems Fall 2013

File Systems 6

File Reading Example Using Seek (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=1; i<=100; i++) {

lseek(f,(100-i)*512,SEEK_SET);

read(f,(void *)buf,512);

}

close(f);

Read the first100 ∗ 512 bytes of a file,512 bytes at a time, in reverse order.

CS350 Operating Systems Fall 2013

134

File Systems 7

File Reading Example Using Positioned Read

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i+=2) {

pread(f,(void *)buf,512,i*512);

}

close(f);

Read every second512 byte chunk of a file, until50 have been read.

CS350 Operating Systems Fall 2013

File Systems 8

Memory-Mapped Files

• generic interface:

vaddr ← mmap(file descriptor,fileoffset,length)

munmap(vaddr,length)

• mmap call returns the virtual address to which the file is mapped

• munmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.

CS350 Operating Systems Fall 2013

135

File Systems 9

Memory Mapping Illustration

virtual address
 space

length

vaddr

length

fileoffset

file

CS350 Operating Systems Fall 2013

File Systems 10

Memory Mapping Update Semantics

• what should happen if the virtual memory to which a file has been mapped is

updated?

• some options:

– prohibit updates (read-only mapping)

– eager propagation of the update to the file (too slow!)

– lazy propagation of the update to the file

∗ user may be able to request propagation (e.g., POSIXmsync()

∗ propagation may be guaranteed bymunmap()

– allow updates, but do not propagate them to the file

CS350 Operating Systems Fall 2013

136

File Systems 11

Memory Mapping Concurrency Semantics

• what should happen if a memory mapped file is updated?

– by a process that has mmapped the same file

– by a process that is updating the file using awrite() system call

• options are similar to those on the previous slide. Typically:

– propagate lazily: processes that have mapped the filemayeventually see the

changes

– propagate eagerly: other processes will see the changes

∗ typically implemented by invalidating other process’s page table entries

CS350 Operating Systems Fall 2013

File Systems 12

File Names

• application-visible objects (e.g., files, directories) are given names

• the file system is responsible for associating names with objects

• the namespace is typically structured, often as a tree or a DAG

• namespace structure provides a way for users and applications to organize and

manage information

• in a structured namespace, objects may be identified bypathnames, which

describe a path from a root object to the object being identified, e.g.:

/home/user/courses/cs350/notes/filesys.pdf

CS350 Operating Systems Fall 2013

137

File Systems 13

Hierarchical Namespace Example

= directory

= file

Key

x
y

z

a

b
ck l

f

a b

g

CS350 Operating Systems Fall 2013

File Systems 14

Hard Links

• ahard link is an association between a name and an underlying file (or
directory)

• typically, when a file is created, a single link is created to the file as well (else
the file would be difficult to use!)

– POSIX example:creat(pathname,mode) creates both a new empty
file object and a link to that object (usingpathname)

• some file systems allow additional hard links to be made to existing files. This
allows more than one name from the file system’s namespace to refer thesame

underlying object.

– POSIX example:link(oldpath,newpath) creates a new hard link,
usingnewpath, to the underlying object identified byoldpath

File systems ensurereferential integrityfor hard links. A hard link refers to

the object it was created for until the link is explicitly destroyed. (What are

the implications of this?)

CS350 Operating Systems Fall 2013

138

File Systems 15

Symbolic Links

• aSymbolic link, or soft link, is an association between two names in the file

namespace. Think of it is a way of defining a synonym for a filename.

– symlink(oldpath,newpath) creates a symbolic link fromnewpath

to oldpath, i.e.,newpath becomes a synonym foroldpath.

• symbolic links relate filenames to filenames, while hard links relate filenames to

underlying file objects!

• referential integrity isnot preserved for symbolic links, e.g., the system call

above can succeed even if there is no object namedoldpath

CS350 Operating Systems Fall 2013

File Systems 16

UNIX/Linux Link Example (1 of 3)

% cat > file1
This is file1.
<cntl-d>
% ls -li
685844 -rw------- 1 user group 15 2008-08-20 file1
% ln file1 link1
% ln -s file1 sym1
% ln not-here link2
ln: not-here: No such file or directory
% ln -s not-here sym2

Files, hard links, and soft/symbolic links.

CS350 Operating Systems Fall 2013

139

File Systems 17

UNIX/Linux Link Example (2 of 3)

% ls -li
685844 -rw------- 2 user group 15 2008-08-20 file1
685844 -rw------- 2 user group 15 2008-08-20 link1
685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1
685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here
% cat file1
This is file1.
% cat link1
This is file1.
% cat sym1
This is file1.
% cat sym2
cat: sym2: No such file or directory
% /bin/rm file1

Accessing and manipulating files, hard links, and soft/symbolic links.

CS350 Operating Systems Fall 2013

File Systems 18

UNIX/Linux Link Example (3 of 3)

% ls -li
685844 -rw------- 1 user group 15 2008-08-20 link1
685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1
685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here
% cat link1
This is file1.
% cat sym1
cat: sym1: No such file or directory
% cat > file1
This is a brand new file1.
<cntl-d>
% ls -li
685847 -rw------- 1 user group 27 2008-08-20 file1
685844 -rw------- 1 user group 15 2008-08-20 link1
685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1
685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here
% cat link1
This is file1.
% cat sym1
This is a brand new file1.

Different behaviour for hard links and soft/symbolic links.

CS350 Operating Systems Fall 2013

140

File Systems 19

Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS/Windows: use two-part file names: file system name, pathname

– example: C:\user\cs350\schedule.txt

Unix: merge file graphs into a single graph

– Unix mount system call does this

CS350 Operating Systems Fall 2013

File Systems 20

Unix mount Example

result of mount (file system X, /x/a)

a

q

rx

g

rx

g

a

q

"root" file system file system X

x y
z

a
b

ck la b

y
z

a
b

ck la b

x

CS350 Operating Systems Fall 2013

141

File Systems 21

Links and Multiple File Systems

• ahard link associates a name in the file system namespace with a file in that file

system

• typically, hard links cannot cross file system boundaries

• for example, even after the mount operation illustrated on the previous slide,

link(/x/a/x/g,/z/d) would result in an error, because the new link,

which is in the root file system refers to an object in file system X

• soft links do not have this limitation

• for example, after the mount operation illustrated on the previous slide:

– symlink(/x/a/x/g,/z/d) would succeed

– open(/z/d) would succeed, with the effect of opening/z/a/x/g.

• even if thesymlink operation were to occurbeforethemount command, it

would succeed

CS350 Operating Systems Fall 2013

File Systems 22

File System Implementation

• space management

• file indexing (how to locate file data and meta-data)

• directories

• links

• buffering, in-memory data structures

• fault tolerance

CS350 Operating Systems Fall 2013

142

File Systems 23

Space Allocation and Layout

• space may be allocated in fixed-size chunks, or in chunks of varying size

• fixed-size chunks: simple space management, but internal fragmentation

• variable-size chunks: external fragmentation

variable−size allocation

fixed−size allocation

• layoutmatters! Try to lay a file out sequentially, or in large sequential extents

that can be read and written efficiently.

CS350 Operating Systems Fall 2013

File Systems 24

File Indexing

• in general, a file will require more than one chunk of allocated space

• this is especially true because files can grow

• how to find all of a file’s data?

chaining:

– each chunk includes a pointer to the next chunk

– OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example

– like chaining, but the chain is kept in an external structure

per-file index: Unix i-node, for example

– for each file, maintain a table of pointers to the file’s blocks or extents

CS350 Operating Systems Fall 2013

143

File Systems 25

Chaining

CS350 Operating Systems Fall 2013

File Systems 26

External Chaining (File Access Table)

(file access table)
external chain

CS350 Operating Systems Fall 2013

144

File Systems 27

Per-File Indexing

CS350 Operating Systems Fall 2013

File Systems 28

Internal File Identifiers

• typically, a file system will assign a unique internal identifier to each file,

directory or other object

• given an identifer, the file system candirectly locate a record containing key

information about the file, such as:

– the per-file index to the file data (if per-file indexing is used), or the location

of the file’s first data block (if chaining is used)

– file meta-data (or a reference to the meta-data), such as

∗ file owner

∗ file access permissions

∗ file acesss timestamps

∗ file type

• for example, a file identifier might be a number which indexes an on-disk array

of file records

CS350 Operating Systems Fall 2013

145

File Systems 29

Example: Unix i-nodes

• an i-node is a record describing a file

• each i-node is uniquely identified by an i-number, which determines its physical

location on the disk

• an i-node is afixed sizerecord containing:

file attribute values

– file type

– file owner and group

– access controls

– creation, reference and update timestamps

– file size

direct block pointers: approximately 10 of these

single indirect block pointer

double indirect block pointer

triple indirect block pointer

CS350 Operating Systems Fall 2013

File Systems 30

i-node Diagram

i−node (not to scale!)

attribute values

single indirect

direct
direct
direct

data blocks

double indirect

triple indirect

indirect blocks

CS350 Operating Systems Fall 2013

146

File Systems 31

Directories

• A directory consists of a set of entries, where each entry is a record that

includes:

– a file name (component of a path name)

– the internal file identifier (e.g., i-number) of the file

• A directory can be implemented as a special type of file. The directory entries

are the contents of the file.

• The file system should not allow directory files to be directly written by

application programs. Instead, the directory is updated by the file system as files

are created and destroyed

CS350 Operating Systems Fall 2013

File Systems 32

Implementing Hard Links

• hard links are simply directory entries

• for example, consider:

link(/y/k/g,/z/m)

• to implement this:

1. find out the internal file identifier for/y/k/g

2. create a new entry in directory/z

– file name in new entry ism

– file identifier (i-number) in the new entry is the one discovered in step 1

CS350 Operating Systems Fall 2013

147

File Systems 33

Implementing Soft Links

• soft links can be implemented as a special type of file

• for example, consider:

symlink(/y/k/g,/z/m)

• to implement this:

– create a newsymlinkfile

– add a new entry in directory/z

∗ file name in new entry ism

∗ i-number in the new entry is the i-number of the new symlink file

– store the pathname string “/y/k/g” as the contents of the new symlink file

• change the behaviour of theopen system call so that when the symlink file is

encountered duringopen(/z/m), the file/y/k/g will be opened instead.

CS350 Operating Systems Fall 2013

File Systems 34

Main Memory Data Structures

1

0

0

open file tables
per process system open file table block buffer cache

Secondary Memory (persistent)

Primary Memory (volatile)

cached i−nodes

(cached copies of blocks)

data blocks, index blocks, i−nodes, etc.

1
2
3

3
2

CS350 Operating Systems Fall 2013

148

File Systems 35

Problems Caused by Failures

• asingle logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because of a failure, some but not all of these changes are reflected on

the disk?

CS350 Operating Systems Fall 2013

File Systems 36

Fault Tolerance

• special-purpose consistency checkers (e.g., Unixfsck in Berkeley FFS, Linux

ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry

∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences of

changes can be written to disk in a single operation

– afterchanges have been journaled, update the disk data structures

(write-ahead logging)

– after a failure, redo journaled updates in case they were not done before the

failure

CS350 Operating Systems Fall 2013

149

Interprocess Communication 1

Interprocess Communication Mechanisms

• shared storage

– These mechanisms have already been covered. examples:

∗ shared virtual memory

∗ shared files

– processes must agree on a name (e.g., a file name, or a shared virtual

memory key) in order to establish communication

• message based

– signals

– sockets

– pipes

– . . .

CS350 Operating Systems Fall 2013

Interprocess Communication 2

Message Passing

Indirect Message Passing

operating system

sender receiver
send receive

operating system

sender receiver
send receive

Direct Message Passing

If message passing is indirect, the message passing system must have some

capacity to buffer (store) messages.

CS350 Operating Systems Fall 2013

150

Interprocess Communication 3

Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:

• simplex (one-way)

• duplex (two-way)

• half-duplex (two-way, but only one way at a time)

Message Boundaries:

datagram model: message boundaries

stream model: no boundaries

CS350 Operating Systems Fall 2013

Interprocess Communication 4

Properties of Message Passing Mechanisms (cont’d)

Connections: need to connect before communicating?

• in connection-oriented models, recipient is specified at time of connection,

not by individual send operations. All messages sent over a connection have

the same recipient.

• in connectionless models, recipient is specified as a parameter to each send

operation.

Reliability:

• can messages get lost?

• can messages get reordered?

• can messages get damaged?

CS350 Operating Systems Fall 2013

151

Interprocess Communication 5

Sockets

• asocket is a communicationend-point

• if two processes are to communicate, each process must create its own socket

• two common types of sockets

stream sockets:support connection-oriented, reliable, duplex communication

under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex

communication under the datagram model (message boundaries)

• both types of sockets also support a variety of address domains, e.g.,

Unix domain: useful for communication between processes running on the

same machine

INET domain: useful for communication between process running on

different machines that can communicate using IP protocols.

CS350 Operating Systems Fall 2013

Interprocess Communication 6

Using Datagram Sockets (Receiver)

s = socket(addressType, SOCK_DGRAM);

bind(s,address);

recvfrom(s,buf,bufLength,sourceAddress);

. . .

close(s);

• socket creates a socket

• bind assigns an address to the socket

• recvfrom receives a message from the socket

– buf is a buffer to hold the incoming message

– sourceAddress is a buffer to hold the address of the message sender

• bothbuf andsourceAddress are filled by therecvfrom call

CS350 Operating Systems Fall 2013

152

Interprocess Communication 7

Using Datagram Sockets (Sender)

s = socket(addressType, SOCK_DGRAM);

sendto(s,buf,msgLength,targetAddress)

. . .

close(s);

• socket creates a socket

• sendto sends a message using the socket

– buf is a buffer that contains the message to be sent

– msgLength indicates the length of the message in the buffer

– targetAddress is the address of the socket to which the message is to

be delivered

CS350 Operating Systems Fall 2013

Interprocess Communication 8

More on Datagram Sockets

• sendto andrecvfrom callsmayblock

– recvfrom blocks if there are no messages to be received from the

specified socket

– sendto blocks if the system has no more room to buffer undelivered

messages

• datagram socket communications are (in general) unreliable

– messages (datagrams) may be lost

– messages may be reordered

• The sending process must know the address of the receive process’s socket.

How does it know this?

CS350 Operating Systems Fall 2013

153

Interprocess Communication 9

A Socket Address Convention

Service Port Description

echo 7/udp

systat 11/tcp

netstat 15/tcp

chargen 19/udp

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp

time 37/udp

gopher 70/tcp # Internet Gopher

finger 79/tcp

www 80/tcp # WorldWideWeb HTTP

pop2 109/tcp # POP version 2

imap2 143/tcp # IMAP

CS350 Operating Systems Fall 2013

Interprocess Communication 10

Using Stream Sockets (Passive Process)

s = socket(addressType, SOCK_STREAM);

bind(s,address);

listen(s,backlog);

ns = accept(s,sourceAddress);

recv(ns,buf,bufLength);

send(ns,buf,bufLength);

. . .

close(ns); // close accepted connection

close(s); // don’t accept more connections

• listen specifies the number of connection requests for this socket that will be

queued by the kernel

• accept accepts a connection request and creates a new socket (ns)

• recv receives up tobufLength bytes of data from the connection

• send sendsbufLength bytes of data over the connection.

CS350 Operating Systems Fall 2013

154

Interprocess Communication 11

Notes on Using Stream Sockets (Passive Process)

• accept creates a new socket (ns) for the new connection

• sourceAddress is an address buffer.accept fills it with the address of the

socket that has made the connection request

• additional connection requests can be accepted using moreaccept calls on

the original socket (s)

• accept blocks if there are no pending connection requests

• connection is duplex (bothsend andrecv can be used)

CS350 Operating Systems Fall 2013

Interprocess Communication 12

Using Stream Sockets (Active Process)

s = socket(addressType, SOCK_STREAM);

connect(s,targetAddress);

send(s,buf,bufLength);

recv(s,buf,bufLength);

. . .

close(s);

• connect sends a connection request to the socket with the specified address

– connect blocks until the connection request has been accepted

• active process may (optionally) bind an address to the socket (usingbind)

before connecting. This is the address that will be returned by theaccept call

in the passive process

• if the active process does not choose an address, the system will choose one

CS350 Operating Systems Fall 2013

155

Interprocess Communication 13

Illustration of Stream Socket Connections

(active)

(active)

(passive)

s s

s2

s3

process 1 process 2

process 3

queue of connection requests

socket

CS350 Operating Systems Fall 2013

Interprocess Communication 14

Pipes

• pipes are communication objects (not end-points)

• pipes use the stream model and are connection-oriented and reliable

• some pipes are simplex, some are duplex

• pipes use an implicit addressing mechanism that limits their use to

communication betweenrelatedprocesses, typically a child process and its

parent

• apipe() system call creates a pipe and returns two descriptors, one for each

end of the pipe

– for a simplex pipe, one descriptor is for reading, the other is for writing

– for a duplex pipe, both descriptors can be used for reading and writing

CS350 Operating Systems Fall 2013

156

Interprocess Communication 15

One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char m[] = "message for parent";

char y[100];

pipe(fd); // create pipe

pid = fork(); // create child process

if (pid == 0) {

// child executes this

close(fd[0]); // close read end of pipe

write(fd[1],m,19);

. . .

} else {

// parent executes this

close(fd[1]); // close write end of pipe

read(fd[0],y,19);

. . .

}

CS350 Operating Systems Fall 2013

Interprocess Communication 16

Illustration of Example (after pipe())

parent process

CS350 Operating Systems Fall 2013

157

Interprocess Communication 17

Illustration of Example (after fork())

parent process child process

CS350 Operating Systems Fall 2013

Interprocess Communication 18

Illustration of Example (after close())

parent process child process

CS350 Operating Systems Fall 2013

158

Interprocess Communication 19

Examples of Other Interprocess Communication Mechanisms

named pipe:

• similar to pipes, but with an associated name (usually a file name)

• name allows arbitrary processes to communicate by opening the same

named pipe

• must be explicitly deleted, unlike an unnamed pipe

message queue:

• like a named pipe, except that there are message boundaries

• msgsend call sends a message into the queue,msgrecv call receives the

next message from the queue

CS350 Operating Systems Fall 2013

Interprocess Communication 20

Signals

• signals permit asynchronous one-way communication

– from a process to another process, or to a group of processes, via the kernel

– from the kernel to a process, or to a group of processes

• there are many types of signals

• the arrival of a signal may cause the execution of asignal handlerin the

receiving process

• there may be a different handler for each type of signal

CS350 Operating Systems Fall 2013

159

Interprocess Communication 21

Examples of Signal Types

Signal Value Action Comment

SIGINT 2 Term Interrupt from keyboard

SIGILL 4 Core Illegal Instruction

SIGKILL 9 Term Kill signal

SIGCHLD 20,17,18 Ign Child stopped or terminated

SIGBUS 10,7,10 Core Bus error

SIGXCPU 24,24,30 Core CPU time limit exceeded

SIGSTOP 17,19,23 Stop Stop process

CS350 Operating Systems Fall 2013

Interprocess Communication 22

Signal Handling

• operating system determines default signal handling for each new process

• example default actions:

– ignore (do nothing)

– kill (terminate the process)

– stop (block the process)

• a running process can change the default for some types of signals

• signal-related system calls

– calls to set non-default signal handlers, e.g., Unixsignal, sigaction

– calls to send signals, e.g., Unixkill

CS350 Operating Systems Fall 2013

160

Interprocess Communication 23

Implementing IPC

• application processes use descriptors (identifiers) provided by the kernel to refer

to specific sockets and pipes, as well as files and other objects

• kerneldescriptor tables(or other similar mechanism) are used to associate

descriptors with kernel data structures that implement IPC objects

• kernel provides bounded buffer space for data that has been sent using an IPC

mechanism, but that has not yet been received

– for IPC objects, like pipes, buffering is usually on a per object basis

– IPC end points, like sockets, buffering is associated with each endpoint

operating system

P1 P2

system call
interface

system call
interface

buffer

CS350 Operating Systems Fall 2013

Interprocess Communication 24

Network Interprocess Communication

• some sockets can be used to connect processes that are running on different

machines

• the kernel:

– controls access to network interfaces

– multiplexes socket connections across the network

P2 P3P1

network interface

P2 P3P1

network interface

network

operating
system

operating
system

CS350 Operating Systems Fall 2013

161

Interprocess Communication 25

Networking Reference Models

• ISO/OSI Reference

Model

7 Application Layer

6 Presentation Layer

5 Session Layer

4 Transport Layer

3 Network Layer

2 Data Link Layer

1 Physical Layer

• Internet Model

– layers 1-4 and 7

layer N service

Layer 1Layer 1

Layer N

Layer N+1

Layer N

Layer N+1

layer 1 protocol

layer N+1 protocol

layer N protocol

layer N+1 service

CS350 Operating Systems Fall 2013

Interprocess Communication 26

Internet Protocol (IP): Layer 3

• every machine has one (or more) IP address, in addition to its data link layer

address(es)

• In IPv4, addresses are 32 bits, and are commonly written using “dot” notation,

e.g.:

– cpu06.student.cs= 129.97.152.106

– www.google.ca= 216.239.37.99 or 216.239.51.104 or ...

• IP moves packets (datagrams) from one machine to another machine

• principal function of IP isrouting: determining the network path that a packet

should take to reach its destination

• IP packet delivery is “best effort” (unreliable)

CS350 Operating Systems Fall 2013

162

Interprocess Communication 27

IP Routing Table Example

• Routing table for zonker.uwaterloo.ca, which is on three networks, and has IP

addresses 129.97.74.66, 172.16.162.1, and 192.168.148.1 (one per network):

Destination Gateway Interface

172.16.162.* - vmnet1

129.97.74.* - eth0

192.168.148.* - vmnet8

default 129.97.74.1 eth0

• routing table key:

destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is directly

reachable)

interface: which network interface to use to send this packet

CS350 Operating Systems Fall 2013

Interprocess Communication 28

Internet Transport Protocols

TCP: transport control protocol

• connection-oriented

• reliable

• stream

• congestion control

• used to implement INET domain stream sockets

UDP: user datagram protocol

• connectionless

• unreliable

• datagram

• no congestion control

• used to implement INET domain datagram sockets

CS350 Operating Systems Fall 2013

163

Interprocess Communication 29

TCP and UDP Ports

• since there can be many TCP or UDP communications end points (sockets) on a

single machine, there must be a way to distinguish among them

• each TCP or UDP address can be thought of as having two parts:

(machine name, port number)

• The machine name is the IP address of a machine, and the port number serves to

distinguish among the end points on that machine.

• INET domain socket addresses are TCP or UDP addresses (depending on

whether the socket is a stream socket or a datagram socket).

CS350 Operating Systems Fall 2013

Interprocess Communication 30

Example of Network Layers

Network
Instance

Network
Instance

Network
Instance

Instance Instance
Data Link

Instance
Data Link

Instance
Data Link

Instance
Transport

Instance
Transport

Application
Process

Application
Process

Data Link

Network
Instance

network

gateways

network

network

CS350 Operating Systems Fall 2013

164

Interprocess Communication 31

Network Packets (UDP Example)

UDP payload

IP payload

Data Link Payload

IP Header UDP header

application message

Data Link Header

application message

UDP header application messageIP Header

UDP header

application message

CS350 Operating Systems Fall 2013

Interprocess Communication 32

BSD Unix Networking Layers

network
device

network

interface layer

socket layer

device
network
device

protocol layer

process

socket queues

system calls

(IP) protocol queue
interface
queues

(ethernet,PPP,loopback,...)

(TCP,UDP,IP,...)

CS350 Operating Systems Fall 2013

165

Additional Notes:

Additional Notes:

166

Additional Notes:

Additional Notes:

167

