Virtual Memory 1

Virtual and Physical Addresses

e Physical addresses are provided directly by the machine.
— one physical address space per machine
— the size of a physical address determines the maximum ambunt
addressable physical memory
¢ Virtual addresses (or logical addresses) are addressé@sgddy the OS to
processes.
— one virtual address spaper process

e Programs use virtual addresses. As a program runs, the aiggdwith help
from the operating system) converts each virtual addreaptoysical address.

e The conversion of a virtual address to a physical addresslsdaddress
translation

On the MIPS, virtual addresses and physical addresse &ies long. This
limits the size of virtual and physical address spaces.

CS350 Operating Systems Fall 2013

Virtual Memory 2

Simple Address Translation: Dynamic Relocation

e hardware provides memory management umvhich includes aelocation
register

e at run-time, the contents of the relocation register areeddd each virtual
address to determine the corresponding physical address

e the OS maintains a separate relocation register value &br gacess, and
ensures that relocation register is reset on each contéxhsw
e Properties

— each virtual address space corresponds to a contiguous oaphysical
addresses

— OS must allocate/deallocate variable-sized chunks ofipalysemory

— potential forexternal fragmentationf physical memory: wasted,
unallocated space

CS350 Operating Systems Fall 2013

Virtual Memory 3

Dynamic Relocation: Address Space Diagram

Proc 1 virtual address space physical memory
0 S~ 0
- A
max1 R
0 e
s A + maxl
C
max2
Proc 2

virtual address space

C + max2
m
2 -1

CS350 Operating Systems Fall 2013

Virtual Memory 4

Dynamic Relocation Mechanism
virtual address physical addres
~— v bits—> ~— m bits —

l | l |
\

—®

[
—~<— m bits —>

relocation
register

CS350 Operating Systems Fall 2013

Virtual Memory

Address Translation: Paging

e Each virtual address space is divided into fixed-size chuakedpages

e The physical address space is divided iintanes Frame size matches page

size.

e OS maintains @age tabldor each process. Page table specifies the frame in

which each of the process’s pages is located.

e Atrun time, MMU translates virtual addresses to physicatgishe page table

of the running process.

e Properties

— simple physical memory management

— potential forinternal fragmentatiorof physical memory: wasted, allocated

space

— virtual address space need not be physically contiguoubkyisipal space

after translation.

CS350 Operating Systems Fall 2013
Virtual Memory 6
Address Space Diagram for Paging
Proc 1 virtual address space physical memory
0 0
max1
0
max2
Proc 2
virtual address space
m
2 -1
CS350 Operating Systems Fall 2013

Virtual Memory

Paging Mechanism

virtual address

~<— v bits—>

‘ page # ‘ offset‘

physical address

~<— m bits —>

‘ frame # ‘ offset‘

A A

~<— m bits —>

page table base
register

protection and
other flags

page table

frame #

CS350

Operating Systems

Fall 2013

Virtual Memory

Memory Protection

e during address translation, the MMU checks to ensure tlegptbcess uses

only valid virtual addresses

— typically, each PTE contains\alid bit which indicates whether that PTE
contains a valid page mapping
— the MMU may also check that the virtual page number does niexa PTE
beyond the end of the page table

e the MMU may also enforce other protection rules

— typically, each PTE containsraad-onlybit that indicates whether the
corresponding page may be modified by the process

e if a process attempts to violated these protection rulesivillU raises an
exception, which is handled by the kernel

The kernel controls which pages are valid and which are predeby setting

the contents of PTEs and/or MMU registers.

CS350

Operating Systems

Fall 2013

Virtual Memory 9

Roles of the Kernel and the MMU (Summary)

e Kernel:

save/restore MMU state on context switches

create and manage page tables

manage (allocate/deallocate) physical memory
— handle exceptions raised by the MMU

e MMU (hardware):
— translate virtual addresses to physical addresses

— check for and raise exceptions when necessary

CS350 Operating Systems Fall 2013

Virtual Memory 10

Remaining Issues
translation speed: Address translation happens very frequently. (How freguen
It must be fast.

sparseness:Many programs will only need a small part of the availablecepfar
their code and data.

the kernel: Each process has a virtual address space in which to run. &gbat
the kernel? In which address space does it run?

CS350 Operating Systems Fall 2013

Virtual Memory 11

Speed of Address Translation

e Execution of each machine instruction may involve one, twmore memory
operations

— one to fetch instruction
— one or more for instruction operands
e Address translation through a page table adds one extra merperation (for

page table entry lookup) for each memory operation perfdrdweing
instruction execution

— Simple address translation through a page table can cuiatisin execution
rate in half.

— More complex translation schemes (e.g., multi-level pgpare even more
expensive.
e Solution: include a Translation Lookaside Buffer (TLB) etMMU
— TLB is a fast, fully associative address translation cache
— TLB hit avoids page table lookup

CS350 Operating Systems Fall 2013

Virtual Memory 12

TLB

e Each entry in the TLB contains a (page number, frame numizer) p

¢ If address translation can be accomplished using a TLB estoess to the
page table is avoided.

e Otherwise, translate through the page table, and add thkingstranslation to
the TLB, replacing an existing entry if necessary. lImaadware controlled
TLB, this is done by the MMU. In goftware controlled’LB, it is done by the
kernel.

e TLB lookup is much faster than a memory access. TLB is an &b
memory - page numbers of all entries are checked simultahetar a match.
However, the TLB is typically small (typically hundredsgel28, or 256
entries).

¢ If the MMU cannot distinguish TLB entries from different agds spaces, then
the kernel must clear or invalidate the TLB. (Why?)

CS350 Operating Systems Fall 2013

Virtual Memory 13

The MIPS R3000 TLB

e The MIPS has a software-controlled TLB that can hold 64 estri

e Each TLB entry includes a virtual page number, a physicah&aumber, an
address space identifier (not used by OS/161), and sevegsi(fialid,
read-only).

e OS/161 provides low-level functions for managing the TLB:

TLB _Write: modify a specified TLB entry

TLB _Random: modify a random TLB entry
TLB _Read: read a specified TLB entry

TLB _Probe: look for a page number in the TLB

¢ If the MMU cannot translate a virtual address using the TLBises an
exception, which must be handled by OS/161.

Seekern/arch/ m ps/include/tlb.h

CS350 Operating Systems Fall 2013

Virtual Memory 14

TLB Shootdown
e If one a processor changes the virtual-to-physical mappirsgn address,
mappings of that address in other processors’ TLBs woulangér be valid.

e The changing processor tells the other processors to datelthat mapping in
their TLB.

e Thisis called a “TLB shootdown”. The processor is shootiog/d
(eliminating) entries in other TLBs that are no longer valid

In OS/161 is it possible to have the same virtual addresgedtior multiple
TLBs?

CS350 Operating Systems Fall 2013

Virtual Memory 15

What is in a Virtual Address Space?

0x00400000 — 0x00401a0c
text (program code) and read—only data

growth

A N \

0x10000000 - 0x101200b0 Stack
data high end of stack: Ox7fffffff

0x00000000 OXFFfffff

This diagram illustrates the layout of the virtual addrgssce for the 0OS/161
test applicatioruser / t est bi n/ sort

CS350 Operating Systems Fall 2013

Virtual Memory 16

Handling Sparse Address Spaces: Sparse Page Tables

uuuuuuuuuuuuuuuuuuu

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

e Consider the page table faser / t est bi n/ sort, assuming a 4 Kbyte page:

— need2!? page table entries (PTES) to cover the bottom half of theairt
address space.

— the text segment occupies 2 pages, the data segment oc28pipages,
and OS/161 sets the initial stack size to 12 pages

e The kernel will mark a PTE as invalid if its page is not mapped.

e Apage table fouser/ t est bi n/ sort, has only303 valid PTEs (of2'?).

An attempt by a process to access an invalid page causes thé tdigen-
erate an exception (known aspage faul} which must be handled by the
operating system.

CS350 Operating Systems Fall 2013

Virtual Memory 17

Segmentation

e Often, programs (likesor t) need several virtual address segments, e.g, for
code, data, and stack.

e One way to support this is to tusegmentito first-class citizens, understood
by the application and directly supported by the OS and thelMM

e Instead of providing a single virtual address space to eemtegs, the OS
provides multiple virtual segments. Each segment is likepmgate virtual
address space, with addresses that start at zero.

¢ With segmentation, a virtual address can be thought of asigpéwo parts:

(segment ID, address within segment)

e Each segment:

— can grow (or shrink) independently of the other segment$o gome
maximum size

— has its own attributes, e.g, read-only protection

CS350 Operating Systems Fall 2013

Virtual Memory 18

Segmented Address Space Diagram

Proc 1 physical memory
0 0
segment 0 .
0
segment 1 -
0
segment 2 .
Proc 2

segment 0

CS350 Operating Systems Fall 2013

Virtual Memory 19

Mechanism for Translating Segmented Addresses

physical address

—~<— m bits —>

—~<— v bits—>
seg# | offset +

segment table

virtual address

|

—
—~<— m bits —>
segment table base
register
length start
protection

This translation mechanism requires physically contigualocation of seg-

ments.
CS350 Operating Systems Fall 2013
Virtual Memory 20

Combining Segmentation and Paging

Proc 1 physical memory
0 0

segment 0

0
segment 1 -

0
segment 2 .

Proc 2

segment 0

CS350 Operating Systems Fall 2013

Virtual Memory 21

Combining Segmentation and Paging: Translation Mechanism

virtual address physical address
Vv bits —~<— m bits —>
‘ seg # ‘ pagea% offset ‘ frame # | offset
segment table page table
|m T T T T T T T T T T [l e
| JE
: : Y
| l |
| |
| |
| |
| |
| B
|
—— 1
—~<— m bits —>
segment table base
register
page table
length
protection
CS350 Operating Systems Fall 2013
Virtual Memory 22

0S/161 Address Spaces: dumbvm

e OS/161 starts with a very simple virtual memory implemeaotat

e virtual address spaces are describedfygr space objects, which record the
mappings from virtual to physical addresses

struct addrspace {

#i f OPT_DUMBVM
vaddr _t as_vbasel; /* base virtual address of code segnent =/
paddr _t as_pbasel; /=* base physical address of code segnent =*/
size_t as_npagesl; /* size (in pages) of code segment =/
vaddr _t as_vbase2; /* base virtual address of data segment =/
paddr _t as_pbase2; /=* base physical address of data segnent =*/
size_t as_npages2; /* size (in pages) of data segnent =/
paddr _t as_stackpbase; /* base physical address of stack */

#el se
[+ Put stuff here for your VM system =/

#endi f

b

This amounts to a slightly generalized version of simpleasigit relocation,
with three bases rather than one.

CS350 Operating Systems Fall 2013

Virtual Memory 23

Address Translation Under dunbvm

the MIPS MMU tries to translate each virtual address usieggthitries in the
TLB

If there is no valid entry for the page the MMU is trying to tedate, the MMU
generates a TLB fault (called audress exceptign

e Thevmf aul t function (se&ker n/ arch/ m ps/ vm dunbvm c) handles
this exception for the OS/161 kernel. It uses informatiamfithe current
processaddr space to construct and load a TLB entry for the page.

On return from exception, the MIPS retries the instructiett taused the page
fault. This time, it may succeed.

vmf aul t is not very sophisticated. If the TLB fills up, OS/161 will std

CS350 Operating Systems Fall 2013

Virtual Memory 24

Shared Virtual Memory

virtual memory sharing allows parts of two or more addres&ep to overlap

shared virtual memory is:

— a way to use physical memory more efficiently, e.g., one cdgyprogram
can be shared by several processes

— a mechanism for interprocess communication

sharing is accomplished by mapping virtual addresses fex@ral processes to
the same physical address

unit of sharing can be a page or a segment

CS350 Operating Systems Fall 2013

Virtual Memory 25

Shared Pages Diagram

Proc 1 virtual address space physical memory
0 0
max1
0
max2
Proc 2

virtual address space

m
2 -1
CS350 Operating Systems Fall 2013
Virtual Memory 26
Shared Segments Diagram
Proc 1 physical memory
0 0
segment 0
(shared) \
0
segment 1 -
0
segment 2 .
Proc 2
0
segment 0 I
segment 1
(shared) m
2 -1

CS350 Operating Systems Fall 2013

Virtual Memory 27

An Address Space for the Kernel

e Each process has its own address space. What about thekernel

e Three possibilities:

Kernel in physical space: disable address translation in privileged system
execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address
translation (e.g., switch page tables) when moving betvpestieged and
unprivileged code

Kernel mapped into portion of address space oévery process. OS/161,
Linux, and other operating systems use this approach
— memory protection mechanism is used to isolate the keraet fr
applications
— one advantage of this approach: application virtual add®te.g.,
system call parameters) are easy for the kernel to use

CS350 Operating Systems Fall 2013

Virtual Memory 28

The Kernel in Process’ Address Spaces

Kernel
(shared, protected)

1T T ["

| |

I I !

: | : :

| ! | — | !

! I ! I

! | ! |

! I ! I

! | ! |

! I ! I

! | ! |

| |

Process 1 Process 2

Address Space Address Spat

Attempts to access kernel code/data in user mode result imanyeprotec-
tion exceptions, not invalid address exceptions.

CS350 Operating Systems Fall 2013

Virtual Memory 29

Address Translation on the MIPS R3000

2GB 2GB
<— user space ————><+—— kernel space ——>
kuseg ksegO || ksegl kseg2
0.5GB | 0.5GB 1GB
A Lu A/T
0xc0000000
TLB mapped 0xa0000000
0x00000000 0x80000000 OXFFfFFff
unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and datetsres live
in ksegO, devices are accessed through ksegl, and ksegdisaab

CS350 Operating Systems Fall 2013

Virtual Memory 30

Loading a Program into an Address Space

e When the kernel creates a process to run a particular progiramst create an
address space for the process, and load the program’s cdamtninto that
address space

e A program’s code and data is described ireaecutable filewhich is created
when the program is compiled and linked

e OS/161 (and some other operating systems) expect exeetilaslto be in ELF
(Executable andl inking Format) format

e The OS/16Jkxecv system call re-initializes the address space of a process
#i ncl ude <unistd. h>
I nt
execv(const char *program char =*=*args)

e Thepr ogr amparameter of thexecv system call should be the name of the
ELF executable file for the program that is to be loaded inéoattidress space.

CS350 Operating Systems Fall 2013

Virtual Memory 31

ELF Files
e ELF files contain address space segment descriptions, \ahgchseful to the
kernel when it is loading a new address space
¢ the ELF file identifies the (virtual) address of the prografin& instruction

e the ELF file also contains lots of other information (e.gct&m descriptors,
symbol tables) that is useful to compilers, linkers, delauggloaders and other
tools used to build programs

CS350 Operating Systems Fall 2013

Virtual Memory 32

Address Space Segments in ELF Files

The ELF file contains a header describing the segments antesgignages

Each ELF segment describes a contiguous region of the vatlthess space.

The header includes an entry for each segment which describe
— the virtual address of the start of the segment
— the length of the segment in the virtual address space
— the location of the start of the segment image in the ELF filpr@sent)
— the length of the segment image in the ELF file (if present)

the image is an exact copy of the binary data that should leketbanto the
specified portion of the virtual address space

the image may be smaller than the address space segmenicimaake the rest
of the address space segment is expected to be zero-filled

To initialize an address space, the kernel copies imagesthe ELF file to
the specifed portions of the virtual address space

CS350 Operating Systems Fall 2013

Virtual Memory 33

ELF Files and OS/161

e OS/161'sdunmbvmimplementation assumes that an ELF file contains two
segments:

— atext segmentontaining the program code and any read-only data
— adata segmentontaining any other global program data

¢ the ELF file does not describe the stack (why not?)

e dunbvmcreates atack segmerior each process. Itis 12 pages long, ending at
virtual addres®x7f ffff f f

Look atker n/ syscal | /| oadel f. c to see how OS/161 loads segments
from ELF files

CS350 Operating Systems Fall 2013

Virtual Memory 34

ELF Sections and Segments

¢ Inthe ELF file, a program’s code and data are grouped togettesections
based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.Sbss: small uninitialized global data
¢ not all of these sections are present in every ELF file

e normally
— the. t ext and. r odat a sections together form the text segment

— the. dat a, . bss and. sbss sections together form the data segement

e space follocal program variables is allocated on the stack when the program
runs

CS350 Operating Systems Fall 2013

Virtual Memory 35

The user/ uw-t est bi n/ segnment s. ¢ Example Program (1 of 2)

#i ncl ude <uni std. h>
#define N (200)

int x = Oxdeadbeef;

int t1;

int t2;

int t3;

int array[4096];

char const =*str = "Hello World\n";
const int z = Oxabcddcba;

struct exanple {

i nt ypos;
i nt Xpos;
b
CS350 Operating Systems Fall 2013
Virtual Memory 36
Theuser/ uw-t est bi n/ segnment s. ¢ Example Program (2 of 2)
i nt
mai n()
{

int count = O;

const int value = 1;
tl1 = N,

t2 = 2;

count = x + t1;

t2 =z + t2 + val ue;

r eboot (RB_POWNERCFF) ;
return 0; /* avoid conpiler warnings x/

CS350 Operating Systems Fall 2013

Virtual Memory

37

Secti on Headers:

[Nr] Nare

[O]

[1] .text

[2] .rodata
[3] .reginfo
[4] .data

[5] .sbss

[6] .bss

Type
NULL
PRO&BI TS
PRO&BI TS

M PS_REG NFO

PROGBI TS
NOBI TS
NCBI TS

Addr

00000000
00400000
00400200
00400220
10000000
10000010
10000030

ELF Sections for the Example Program

O f

000000
010000
010200
010220
020000
020010
020010

Si ze

000000
000200
000020
000018
000010
000014
004000

s25,,% &

ﬁiégs: W(wite), A (alloc), X (execute), p (processor specific)

Size =
OFf = offset
Addr = virtua

nunber of bytes (e.g.

.text

into the ELF file

addr ess

is 0x200 =

512 bytes

Thecs350-readel f program can be used to inspect OS/161 MIPS ELF

files: cs350-r eadel f

-a segnents

CS350 Operating Systems Fall 2013

Virtual Memory 38
ELF Segments for the Example Program

Pr ogr am Header s:

Type O fset Vi rt Addr PhysAddr FileSiz MenSiz Flg Align

REG NFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R 0x4

LOCAD
LOAD

program

the REGINFO section is not used
the first LOAD segment includes the .text and .rodata sestion

the second LOAD segment includes .data, .sbss, and .bss

0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000
0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

segment info, like section info, can be inspected usingg®50- r eadel f

CS350

Operating Systems

Fall 2013

Virtual Memory 39

Contents of the Example Program’s. t ext Section

Contents of section .text:
400000 3c1c1001 279c8000 2408fff8 03a8e824 <...'...$...... $

Decodi ng 3c1c1001 to determ ne instruction

0x3c1c1001 = binary 111100000111000001000000000001
0011 1100 0001 1100 0001 0000 0000 0001

instr | rs | rt | i medi at e

6 bits | 5 bits| 5 bits| 16 bits

001111 | 00000 | 11100 | 0001 0000 0000 0001

LUl | O | reg 28| 0x1001

LU | unused| reg 28| 0x1001

Load upper imrediate into rt (register target)

lui gp, 0x1001

Thecs350- obj dunp program can be used to inspect OS/161 MIPS ELF
file section contentcs350- obj dunp -s segnents

CS350 Operating Systems Fall 2013

Virtual Memory 40

Contents of the Example Program’s. r odat a Section

Contents of section .rodata:
400200 abcddcba 00000000 00000000 00000000
400210 48656¢c6¢c 6f 20576f 726c640a 00000000 Hello World.

const int z = Oxabcddcba

|f conpiler doesn't prevent z frombeing witten,
#it then the hardware coul d.

0x48 = "H O0x65 = '€’ 0x0a = '\n" 0x00 = "\0O’

The. r odat a section contains the “Hello World” string literal and theneo
stant integer variable.

CS350 Operating Systems Fall 2013

Virtual Memory 41

Contents of the Example Program’s. dat a Section

Contents of section .data:
10000000 deadbeef 00400210 00000000 00000000 @.........

Size = 0x10 bytes = 16 bytes (padding for alignnent)
int x = deadbeef (4 bytes)

char const *str = "Hello Wirld\n"; (4 bytes)

address of str = 0x10000004

value stored in str = 0x00400210.

NOTE: this is the address of the start

of the string literal in the .rodata section

The. dat a section contains the initialized global variabgtsr andx.

CS350 Operating Systems Fall 2013

Virtual Memory 42

Contents of the Example Program’s. bss and. sbss Sections

10000000

D x
10000004 D str
10000010 S t3 ## S indi cates sbss section
10000014 S t2
10000018 S t1
1000001c S errno
10000020 S __argv
10000030 B array ## B indi cates bss section
10004030 A _end
10008000 A _gp

Thet 1,t 2, andt 3 variables are in thesbss section. Thear r ay variable
isinthe. bss section. There are no values for these variables in the E&F fil
as they are uninitialized. Thes350- nmprogram can be used to inspect
symbols defined in ELF filexxs350- nm - n <fi | enanme>, in this case
cs350-nm -n segnents.

CS350 Operating Systems Fall 2013

Virtual Memory 43

System Call Interface for Virtual Memory Management

e much memory allocation is implicit, e.g.:
— allocation for address space of new process
— implicit stack growth on overflow
e OS may support explicit requests to grow/shrink addressespag., Unidor k
system call.
e shared virtual memory (simplified Solaris example):
Create: shm d = shnget (key, si ze)
Attach: vaddr = shmat (shm d, vaddr)
Detach: shndt (vaddr)
Delete: shntt| (shm d, | PC.RM D)

CS350 Operating Systems Fall 2013

Virtual Memory 44

Exploiting Secondary Storage

Goals:
e Allow virtual address spaces that are larger than the phlaudress space.

¢ Allow greater multiprogramming levels by using less of thaikable (primary)
memory for each process.

Method:

e Allow pages (or segments) from the virtual address space &idred in
secondary memory, as well as primary memory.

e Move pages (or segments) between secondary and primary ipemithat they
are in primary memory when they are needed.

CS350 Operating Systems Fall 2013

Virtual Memory 45

The Memory Hierarchy

BANDWIDTH (bytes/sec) SIZE (bytes)

L1 Caché 104

L2 Cach% 106

primary
memory

|

secondary
108 memory 1012

108

(disk)

CS350 Operating Systems Fall 2013

Virtual Memory 46

Large Virtual Address Spaces

Virtual memory allows for very large virtual address spacesl very large
virtual address spaces require large page tables.

example:2*® byte virtual address spacgKbyte 22 byte) pagess byte page
table entries means

248

FQQ = 237 bytes per page table

page tables for large address spaces may be very large, and
— they must be in memory, and

— they must be physically contiguous

some solutions:

— multi-level page tables - page the page tables

— inverted page tables

CS350 Operating Systems Fall 2013

Virtual Memory a7

Two-Level Paging

virtual address (v bits) | I

page # ‘ page # ‘ offset‘ - 1f ___ 3 frame # | offset
= T T T
cioIo physical address (m bits)

/1
—~— m bits —> level 1 cToo
page table base page table ri N
register R
[E—
croZo
A
e
level 2
page tables
CS350 Operating Systems Fall 2013
Virtual Memory "

Inverted Page Tables

e A normal page table maps virtual pages to physical framesnyerted page
table maps physical frames to virtual pages.
e Other key differences between normal and inverted pagegabl
— there is only one inverted page table, not one table per psoce
— entries in an inverted page table must include a processfieen
e An inverted page table only specifies the location of virpeges that are

located in memory. Some other mechanism (e.g., regular faddgs) must be
used to locate pages that are not in memory.

CS350 Operating Systems Fall 2013

Virtual Memory 49

Paging Policies

When to Page?:
Demand pagindprings pages into memory when they are used. Alternatively,
the OS can attempt to guess which pages will be usedpeeidtchthem.

What to Replace?:
Unless there are unused frames, one page must be replacaatfopage that is
loaded into memory. Aeplacement policgpecifies how to determine which
page to replace.

Similar issues arise if (pure) segmentation is used, odytfit of data trans-
fer is segments rather than pages. Since segments may \&rgjrsegmen-
tation also requires placement policywhich specifies where, in memory, a
newly-fetched segment should be placed.

CS350 Operating Systems Fall 2013

Virtual Memory 50

Global vs. Local Page Replacement

e When the system’s page reference string is generated bythremmeone process,
should the replacement policy take this into account?

Global Policy: A global policy is applied to all in-memory pages, regardleg
the process to which each one “belongs”. A page requesteddoggs X
may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to
processes according to some memory allocation policy. Roement
policy is then applied separately to each process’s akaocspace. A page
requested by process X replaces another page that “beltmgsdcess X.

CS350 Operating Systems Fall 2013

Virtual Memory 51

Paging Mechanism
e A valid bit (V') in each page table entry is used to track which pages are in
(primary) memory, and which are not.
V' = 1: valid entry which can be used for translation
V = 0: invalid entry. If the MMU encounters an invalid page tablérgnt
raises gpage faultexception.
e To handle a page fault exception, the operating system must:

— Determine which page table entry caused the exception.Y{B/E1, and in
real MIPS processors, MMU puts the offending virtual addieso a
register on the CPO co-processor (register 8@@dr/BadVaddr). The kernel
can read that register.

— Ensure that that page is brought into memory.
On return from the exception handler, the instruction teatitted in the page
fault will be retried.

¢ If (pure) segmentation is being used, there will be a validrbeach segment
table entry to indicate whether the segment is in memory.

CS350 Operating Systems Fall 2013

Virtual Memory 52

A Simple Replacement Policy: FIFO

¢ the FIFO policy: replace the page that has been in memorytigekt

e athree-frame example:

Num|1|2|3(4|5(6|7[8|9]10| 11|12
Refs|a|b|jc|d|a|b|jeja|b|lc | d]| e
Frame 1| a aj/d|d|d|le|e|e| e]| e]| e
Frame 2 b|blalala alc|c
Frame 3 ciclc|bl|b b|d|d
Fault?| x | X | X | X [X | X | X X | X

CS350 Operating Systems Fall 2013

Virtual Memory 53

Optimal Page Replacement

e There is an optimal page replacement policy for demand gagin

e The OPT policy: replace the page that will not be referencedhfe longest

time.

Num|1|2|3|4|5|6|7|8|9|10]| 11| 12

Refs|a|b|c|d|a|b|eja|lb| c | d e

Framella|a|alalalalalala| ¢ c c

Frame 2 b|b|b b|b|b| b d d

Frame 3 cl|d|d ele|le| e e e

Fault?| x | x | x | x X X X
e OPT requires knowledge of the future.

CS350 Operating Systems Fall 2013
Virtual Memory 54

Other Replacement Policies

e FIFO is simple, but it does not consider:
Frequency of Use: how often a page has been used?
Recency of Use:when was a page last used?
Cleanliness: has the page been changed while it is in memory?

e Theprinciple of localitysuggests that usage ought to be considered in a
replacement decision.

¢ Cleanliness may be worth considering for performance reaso

CS350 Operating Systems Fall 2013

Virtual Memory 55

Locality
e Locality is a property of the page reference string. In otherds, it is a
property of programs themselves.

e Temporal localitysays that pages that have been used recently are likely to be
used again.

e Spatial localitysays that pages “close” to those that have been used arngtlikel
be used next.

In practice, page reference strings exhibit strong logaiithy?

CS350 Operating Systems Fall 2013

Virtual Memory 56

Frequency-based Page Replacement

Counting references to pages can be used as the basis forgpdageement
decisions.

Example: LFU (Least Frequently Used)
Replace the page with the smallest reference count.

Any frequency-based policy requires a reference countiaghanism, e.g.,
MMU increments a counter each time an in-memory page iseatsd.

Pure frequency-based policies have several potentialldreks:

— Old references are never forgotten. This can be addressperimgdically
reducing the reference count of every in-memory page.

— Freshly loaded pages have small reference counts and akg\iktims -
ignores temporal locality.

CS350 Operating Systems Fall 2013

Virtual Memory

57

Least Recently Used (LRU) Page Replacement

e LRU is based on the principle of temporal locality: repldoe page that has not

been used for the longest time

e To implement LRU, it is necessary to track each page’s rgcefhuase. For
example: maintain a list of in-memory pages, and move a pagestfront of

the list when it is used.

¢ Although LRU and variants have many applications, LRU igoftonsidered to
be impractical for use as a replacement policy in virtual mgnsystems. Why?

CS350 Operating Systems Fall 2013
Virtual Memory 58
Least Recently Used: LRU

¢ the same three-frame example:

Num|1|2|3/4|5|6|7|8|9]10| 11| 12
Refs|a|b|c|d|a|b|eja|lb| c|d e

Framel a|a|la|d|d|d|e|e|e]| c c C

Frame 2 b|b|blalalala|a|] a| d d

Frame 3 clclc|b|lb|b|b| b | b]| e

Fault? | x | X | X | X | X | X | X X | X | X

CS350 Operating Systems Fall 2013

Virtual Memory 59

The “Use” Bit

e A use bit(or reference bitis a bit found in each TLB entry that:

— is set by the MMU each time the page is used, i.e., each timgl\g
translates a virtual address on that page

— can be read and modified by the operating system

— operating system copies use information into page table

e The use bit provides a small amount of efficiently-maintaleaisage
information that can be exploited by a page replacementisthgo.

Entries in the MIPS TLB do not include a use bit.

CS350 Operating Systems Fall 2013

Virtual Memory 60

What if the MMU Does Not Provide a “Use” Bit?

¢ the kernel can emulate the “use” bit, at the cost of extra @xwes

1. When a page is loaded into memory, mark itraslid (even though it as
been loaded) and set its simulated “use” bit to false.
. If a program attempts to access the page, an exceptionailir.

In its exception handler, the OS sets the page’s simufataf bit to “true”
and marks the pagelid so that further accesses do not cause exceptions.

e This technique requires that the OS maintain extra bitsfofimation for each
page:

1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory

CS350 Operating Systems Fall 2013

Virtual Memory 61

The Clock Replacement Algorithm

e The clock algorithm (also known as “second chance”) is orta®&implest
algorithms that exploits the use bit.

e Clock is identical to FIFO, except that a page is “skippedtsfuse bit is set.

e The clock algorithm can be visualized as a victim pointet tyales through
the page frames. The pointer moves whenever a replacemeattéssary:

while use bit of victimis set

clear use bit of victim

victim= (victim+ 1) % numfranes
choose victimfor replacenent
victim= (victim+ 1) % numfranes

CS350 Operating Systems Fall 2013

Virtual Memory 62

Page Cleanliness: the “Modified” Bit

A page ismodified(sometimes called dirty) if it has been changed since it was
loaded into memory.

A modified page is more costly to replace than a clean pagey®Vh

The MMU identifies modified pages by settingredified bitin the TLB entry
when the contents of the page change.

Operating system clears the modified bit when it cleans tige pa

The modified bit potentially has two roles:
— Indicates which pages need to be cleaned.
— Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.

CS350 Operating Systems Fall 2013

Virtual Memory 63

What if the MMU Does Not Provide a “Modified” Bit?

e Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark iteesd-only(even if it is
actually writeable) and set its simulated “modified” bit &ise.

2. If a program attempts to modify the page, a protection gxae will occur.

3. Inits exception handler, if the page is supposed to besabit, the OS sets
the page’s simulated “modified” bit to “true” and marks thgeas
writeable.

e This technique requires that the OS maintain two extra litsformation for
each page:
1. the simulated “modified” bit
2. a“writeable” bit to indicate whether the page is suppdsdak writeable

CS350 Operating Systems Fall 2013

Virtual Memory 64

Enhanced Second Chance Replacement Algorithm

¢ Classify pages according to their use and modified bits:
(0,0): not recently used, clean.
(0,1): not recently used, modified.
(1,0): recently used, clean
(1,2): recently used, modified

e Algorithm:
1. Sweep once looking for (0,0) page. Don’t clear use bitderboking.

2. If none found, look for (0,1) page, this time clearing “Ubds for bypassed
frames.

3. If step 2 fails, all use bits will be zero, repeat from step 1
(guaranteed to find a page).

CS350 Operating Systems Fall 2013

Virtual Memory 65

Page Cleaning
e A modified page must be cleaned before it can be replacedvatechanges
on that page will be lost.
¢ Cleaninga page means copying the page to secondary storage.
¢ Cleaning is distinct from replacement.

e Page cleaning may ®/nchronousr asynchronous

synchronous cleaning: happens at the time the page is replaced, during page

fault handling. Page is first cleaned by copying it to secondtorage. Then
a new page is brought in to replace it.

asynchronous cleaning:happens before a page is replaced, so that page fault

handling can be faster.

— asynchronous cleaning may be implemented by dedicatepaQ&
cleaning threadshat sweep through the in-memory pages cleaning
modified pages that they encounter.

CS350 Operating Systems Fall 2013

Virtual Memory 66

Belady’s Anomaly

e FIFO replacement, 4 frames

Num|1|2|3[4|5/6|7|8|9]10|11] 12
Refs|a|b|c|d|a|b|lela|b|c | d]| e
Frame 1| a alalalele|le|e|d|d
Frame 2 b|b|/b|bjaja|] a| a]| e
Frame 3 ciclclc|c|c|b| b|Db|b
Frame 4 d|d{d|d|d|d| c|c]|cC
Fault? | x | x | x | X X[X|X]| X | X | X

e FIFO example on Slide 52 with same reference string had 3dsand only 9
faults.

More memory does not necessarily mean fewer page faults.

CS350 Operating Systems Fall 2013

Virtual Memory 67

Stack Policies

Let B(m,t) represent the set of pages in the system witframes of memory,
at timet, under some given replacement policy, for some given ret&string.

A replacement policy is calledstack policyif, for all reference strings, ath
and allt:
B(m,t) C B(m+ 1,t)

If a replacement algorithm imposes a total order, indepeinaithe number of
frames (i.e., memory size), on the pages and it replaceathedt (or smallest)
page according to that order, then it satisfies the defingfanstack policy.

Examples: LRU is a stack algorithm. FIFO and CLOCK are natlsta
algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.

CS350 Operating Systems Fall 2013

Virtual Memory 68

Prefetching

Prefetching means moving virtual pages into memory befogg &re needed,
I.e., before a page fault results.

The goal of prefetching igtency hiding do the work of bringing a page into
memory in advance, not while a process is waiting.

To prefetch, the operating system must guess which pagkekenileeded.

Hazards of prefetching:

— guessing wrong means the work that was done to prefetch gevpas
wasted

— guessing wrong means that some other potentially usefd pbag been
replaced by a page that is not used

most common form of prefetching is simple sequential pobifieq: if a process
uses page, prefetch page + 1.

sequential prefetching exploits spatial locality of refere

CS350 Operating Systems Fall 2013

Virtual Memory 69

Page Size

the virtual memory page size must be understood by both tireekand the
MMU

some MMUs have support for a configurable page size

advantages of larger pages
— smaller page tables
— largerTLB footprint

— more efficient I/O

disadvantages of larger pages
— greater internal fragmentation

— increased chance of paging in unnecessary data

0S/161 on the MIPS uses a 4KB virtual memory page size.

CS350 Operating Systems Fall 2013

Virtual Memory 70

How Much Physical Memory Does a Process Need?

Principle of locality suggests that some portions of thecpss’s virtual address
space are more likely to be referenced than others.

A refinement of this principle is theorking set modebf process reference
behaviour.

According to the working set model, at any given time somdiponf a
program’s address space will be heavily used and the remamd not be.
The heavily used portion of the address space is calledtinking setf the
process.

The working set of a process may change over time.

Theresident sebf a process is the set of pages that are located in memory.

According to the working set model, if a process’s residentiscludes its
working set, it will rarely page fault.

CS350 Operating Systems Fall 2013

Virtual Memory 71

Resident Set Sizes (Example)

PID VSZ RSS COVIVAND

805 13940 5956 /usr/bi n/ gnome-session
831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11
838 6964 2292 gnone- snproxy

840 14720 5008 gnone-settings-daenon
848 8412 3888 sawfi sh

851 34980 7544 nautil us

853 19804 14208 gnone- panel

857 9656 2672 gpilotd

867 4608 1252 gnone- name-service

CS350 Operating Systems Fall 2013

Virtual Memory 72

Refining the Working Set Model

e DefineWW S(t, A) to be the set of pages referenced by a given process during th
time interval(t — A, t). WS(¢, A) is the working set of the process at tite

e Define|WS(t, A)| to be the size oV S(¢, A), i.e., the number afiistinct
pages referenced by the process.

e If the operating system could tradk S(¢, A), it could:

— use|W S(t, A)| to determine the number of frames to allocate to the process
under a local page replacement policy

— useW S(t, A) directly to implement a working-set based page replacement
policy: any page that is no longer in the working set is a caai for
replacement

CS350 Operating Systems Fall 2013

Virtual Memory 73

Page Fault Frequency
e A more direct way to allocate memory to processes is to meakeirpage
fault frequencies the number of page faults they generate per unit time.

e If a process’s page fault frequency is too high, it needs mmmory. Ifitis
low, it may be able to surrender memory.

e The working set model suggests that a page fault frequerntyspbuld have a

sharp “knee”.

CS350 Operating Systems Fall 2013
Virtual Memory 74
A Page Fault Frequency Plot

high
page fault frequency curve
process
page fault
frequency
thresholds
low

few many
frames allocated to process

CS350 Operating Systems Fall 2013

Virtual Memory 75

Thrashing and Load Control

e What is a good multiprogramming level?
— If too low: resources are idle
— If too high: too few resources per process
e A system that is spending too much time paging is said tthizshing
Thrashing occurs when there are too many processes cometithe
available memory.
e Thrashing can be cured by load shedding, e.g.,
— Killing processes (not nice)
— Suspending angwapping ouprocesses (nicer)

CS350 Operating Systems Fall 2013

Virtual Memory 76

Swapping Out Processes

e Swapping a process out means removing all of its pages fromamg or
marking them so that they will be removed by the normal pag&oement
process. Suspending a process ensures that it is not renmhlibé it is swapped
out.

e Which process(es) to suspend?

— low priority processes
— blocked processes
— large processes (lots of space freed) or small processasr(&areload)

e There must also be a policy for making suspended processeyg when system
load has decreased.

CS350 Operating Systems Fall 2013

