
Virtual Memory 1

Virtual and Physical Addresses

• Physical addresses are provided directly by the machine.

– one physical address space per machine

– the size of a physical address determines the maximum amountof

addressable physical memory

• Virtual addresses (or logical addresses) are addresses provided by the OS to

processes.

– one virtual address spaceper process

• Programs use virtual addresses. As a program runs, the hardware (with help

from the operating system) converts each virtual address toa physical address.

• The conversion of a virtual address to a physical address is calledaddress

translation.

On the MIPS, virtual addresses and physical addresses are32 bits long. This

limits the size of virtual and physical address spaces.
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Simple Address Translation: Dynamic Relocation

• hardware provides amemory management unitwhich includes arelocation

register

• at run-time, the contents of the relocation register are added to each virtual

address to determine the corresponding physical address

• the OS maintains a separate relocation register value for each process, and

ensures that relocation register is reset on each context switch

• Properties

– each virtual address space corresponds to a contiguous range of physical

addresses

– OS must allocate/deallocate variable-sized chunks of physical memory

– potential forexternal fragmentationof physical memory: wasted,

unallocated space
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Dynamic Relocation: Address Space Diagram
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Dynamic Relocation Mechanism
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Address Translation: Paging

• Each virtual address space is divided into fixed-size chunkscalledpages

• The physical address space is divided intoframes. Frame size matches page

size.

• OS maintains apage tablefor each process. Page table specifies the frame in

which each of the process’s pages is located.

• At run time, MMU translates virtual addresses to physical using the page table

of the running process.

• Properties

– simple physical memory management

– potential forinternal fragmentationof physical memory: wasted, allocated

space

– virtual address space need not be physically contiguous in physical space

after translation.
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Address Space Diagram for Paging

2
m

−1

0
Proc 1 virtual address space

0

max1

virtual address space
Proc 2

physical memory

max2

0

CS350 Operating Systems Fall 2013



Virtual Memory 7

Paging Mechanism
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Memory Protection

• during address translation, the MMU checks to ensure that the process uses

only valid virtual addresses

– typically, each PTE contains avalid bit which indicates whether that PTE

contains a valid page mapping

– the MMU may also check that the virtual page number does not index a PTE

beyond the end of the page table

• the MMU may also enforce other protection rules

– typically, each PTE contains aread-onlybit that indicates whether the

corresponding page may be modified by the process

• if a process attempts to violated these protection rules, the MMU raises an

exception, which is handled by the kernel

The kernel controls which pages are valid and which are protected by setting

the contents of PTEs and/or MMU registers.
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Roles of the Kernel and the MMU (Summary)

• Kernel:

– save/restore MMU state on context switches

– create and manage page tables

– manage (allocate/deallocate) physical memory

– handle exceptions raised by the MMU

• MMU (hardware):

– translate virtual addresses to physical addresses

– check for and raise exceptions when necessary
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Remaining Issues

translation speed: Address translation happens very frequently. (How frequently?)

It must be fast.

sparseness:Many programs will only need a small part of the available space for

their code and data.

the kernel: Each process has a virtual address space in which to run. Whatabout

the kernel? In which address space does it run?
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Speed of Address Translation

• Execution of each machine instruction may involve one, two or more memory
operations

– one to fetch instruction

– one or more for instruction operands

• Address translation through a page table adds one extra memory operation (for

page table entry lookup) for each memory operation performed during

instruction execution

– Simple address translation through a page table can cut instruction execution

rate in half.

– More complex translation schemes (e.g., multi-level paging) are even more

expensive.

• Solution: include a Translation Lookaside Buffer (TLB) in the MMU

– TLB is a fast, fully associative address translation cache

– TLB hit avoids page table lookup
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TLB

• Each entry in the TLB contains a (page number, frame number) pair.

• If address translation can be accomplished using a TLB entry, access to the

page table is avoided.

• Otherwise, translate through the page table, and add the resulting translation to

the TLB, replacing an existing entry if necessary. In ahardware controlled

TLB, this is done by the MMU. In asoftware controlledTLB, it is done by the

kernel.

• TLB lookup is much faster than a memory access. TLB is an associative

memory - page numbers of all entries are checked simultaneously for a match.

However, the TLB is typically small (typically hundreds, e.g. 128, or 256

entries).

• If the MMU cannot distinguish TLB entries from different address spaces, then

the kernel must clear or invalidate the TLB. (Why?)
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The MIPS R3000 TLB

• The MIPS has a software-controlled TLB that can hold 64 entries.

• Each TLB entry includes a virtual page number, a physical frame number, an

address space identifier (not used by OS/161), and several flags (valid,

read-only).

• OS/161 provides low-level functions for managing the TLB:

TLB Write: modify a specified TLB entry

TLB Random: modify a random TLB entry

TLB Read: read a specified TLB entry

TLB Probe: look for a page number in the TLB

• If the MMU cannot translate a virtual address using the TLB itraises an

exception, which must be handled by OS/161.

Seekern/arch/mips/include/tlb.h
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TLB Shootdown

• If one a processor changes the virtual-to-physical mappingof an address,

mappings of that address in other processors’ TLBs would no longer be valid.

• The changing processor tells the other processors to invalidate that mapping in

their TLB.

• This is called a “TLB shootdown”. The processor is shooting down

(eliminating) entries in other TLBs that are no longer valid.

In OS/161 is it possible to have the same virtual address stored in multiple

TLBs?
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What is in a Virtual Address Space?

0x00400000 − 0x00401a0c

growth

text (program code) and read−only data

data
0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

This diagram illustrates the layout of the virtual address space for the OS/161

test applicationuser/testbin/sort
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Handling Sparse Address Spaces: Sparse Page Tables
0x00400000 − 0x00401a0c

growth

text (program code) and read−only data

data
0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

• Consider the page table foruser/testbin/sort, assuming a 4 Kbyte page:

– need219 page table entries (PTEs) to cover the bottom half of the virtual

address space.

– the text segment occupies 2 pages, the data segment occupies289 pages,

and OS/161 sets the initial stack size to 12 pages

• The kernel will mark a PTE as invalid if its page is not mapped.

• A page table foruser/testbin/sort, has only303 valid PTEs (of219).

An attempt by a process to access an invalid page causes the MMU to gen-

erate an exception (known as apage fault) which must be handled by the

operating system.
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Segmentation

• Often, programs (likesort) need several virtual address segments, e.g, for

code, data, and stack.

• One way to support this is to turnsegmentsinto first-class citizens, understood

by the application and directly supported by the OS and the MMU.

• Instead of providing a single virtual address space to each process, the OS

provides multiple virtual segments. Each segment is like a separate virtual

address space, with addresses that start at zero.

• With segmentation, a virtual address can be thought of as having two parts:

(segment ID, address within segment)

• Each segment:

– can grow (or shrink) independently of the other segments, upto some

maximum size

– has its own attributes, e.g, read-only protection
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Segmented Address Space Diagram
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Mechanism for Translating Segmented Addresses
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This translation mechanism requires physically contiguous allocation of seg-

ments.
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Combining Segmentation and Paging
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Combining Segmentation and Paging: Translation Mechanism
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OS/161 Address Spaces: dumbvm

• OS/161 starts with a very simple virtual memory implementation

• virtual address spaces are described byaddrspace objects, which record the
mappings from virtual to physical addresses

struct addrspace {
#if OPT_DUMBVM

vaddr_t as_vbase1; /* base virtual address of code segment */
paddr_t as_pbase1; /* base physical address of code segment */
size_t as_npages1; /* size (in pages) of code segment */
vaddr_t as_vbase2; /* base virtual address of data segment */
paddr_t as_pbase2; /* base physical address of data segment */
size_t as_npages2; /* size (in pages) of data segment */
paddr_t as_stackpbase; /* base physical address of stack */

#else
/* Put stuff here for your VM system */

#endif
};

This amounts to a slightly generalized version of simple dynamic relocation,

with three bases rather than one.
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Address Translation Underdumbvm

• the MIPS MMU tries to translate each virtual address using the entries in the

TLB

• If there is no valid entry for the page the MMU is trying to translate, the MMU

generates a TLB fault (called anaddress exception)

• Thevm fault function (seekern/arch/mips/vm/dumbvm.c) handles

this exception for the OS/161 kernel. It uses information from the current

process’addrspace to construct and load a TLB entry for the page.

• On return from exception, the MIPS retries the instruction that caused the page

fault. This time, it may succeed.

vm fault is not very sophisticated. If the TLB fills up, OS/161 will crash!
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Shared Virtual Memory

• virtual memory sharing allows parts of two or more address spaces to overlap

• shared virtual memory is:

– a way to use physical memory more efficiently, e.g., one copy of a program

can be shared by several processes

– a mechanism for interprocess communication

• sharing is accomplished by mapping virtual addresses from several processes to

the same physical address

• unit of sharing can be a page or a segment
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Shared Pages Diagram
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Shared Segments Diagram
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An Address Space for the Kernel

• Each process has its own address space. What about the kernel?

• Three possibilities:

Kernel in physical space: disable address translation in privileged system

execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address

translation (e.g., switch page tables) when moving betweenprivileged and

unprivileged code

Kernel mapped into portion of address space ofevery process: OS/161,

Linux, and other operating systems use this approach

– memory protection mechanism is used to isolate the kernel from

applications

– one advantage of this approach: application virtual addresses (e.g.,

system call parameters) are easy for the kernel to use
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The Kernel in Process’ Address Spaces

Process 1 Process 2
Address Space Address Space

Kernel
(shared, protected)

Attempts to access kernel code/data in user mode result in memory protec-

tion exceptions, not invalid address exceptions.
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Address Translation on the MIPS R3000

2 GB
user space kernel space

2 GB

TLB mapped

0x00000000 0xffffffff0x80000000

0xa0000000

0xc0000000

kseg0 kseg1 kseg2kuseg

1 GB0.5GB0.5GB

unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and data structures live

in kseg0, devices are accessed through kseg1, and kseg2 is not used.

CS350 Operating Systems Fall 2013

Virtual Memory 30

Loading a Program into an Address Space

• When the kernel creates a process to run a particular program, it must create an

address space for the process, and load the program’s code and data into that

address space

• A program’s code and data is described in anexecutable file, which is created

when the program is compiled and linked

• OS/161 (and some other operating systems) expect executable files to be in ELF

(Executable andL inking Format) format

• The OS/161execv system call re-initializes the address space of a process

#include <unistd.h>

int

execv(const char *program, char **args)

• Theprogram parameter of theexecv system call should be the name of the

ELF executable file for the program that is to be loaded into the address space.
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ELF Files

• ELF files contain address space segment descriptions, whichare useful to the

kernel when it is loading a new address space

• the ELF file identifies the (virtual) address of the program’sfirst instruction

• the ELF file also contains lots of other information (e.g., section descriptors,

symbol tables) that is useful to compilers, linkers, debuggers, loaders and other

tools used to build programs
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Address Space Segments in ELF Files

• The ELF file contains a header describing the segments and segmentimages.

• Each ELF segment describes a contiguous region of the virtual address space.

• The header includes an entry for each segment which describes:

– the virtual address of the start of the segment

– the length of the segment in the virtual address space

– the location of the start of the segment image in the ELF file (if present)

– the length of the segment image in the ELF file (if present)

• the image is an exact copy of the binary data that should be loaded into the
specified portion of the virtual address space

• the image may be smaller than the address space segment, in which case the rest
of the address space segment is expected to be zero-filled

To initialize an address space, the kernel copies images from the ELF file to

the specifed portions of the virtual address space
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ELF Files and OS/161

• OS/161’sdumbvm implementation assumes that an ELF file contains two

segments:

– a text segment, containing the program code and any read-only data

– a data segment, containing any other global program data

• the ELF file does not describe the stack (why not?)

• dumbvm creates astack segmentfor each process. It is 12 pages long, ending at

virtual address0x7fffffff

Look atkern/syscall/loadelf.c to see how OS/161 loads segments

from ELF files
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ELF Sections and Segments

• In the ELF file, a program’s code and data are grouped togetherinto sections,

based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data

• not all of these sections are present in every ELF file

• normally

– the.text and.rodata sections together form the text segment

– the.data, .bss and.sbss sections together form the data segement

• space forlocal program variables is allocated on the stack when the program

runs
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The user/uw-testbin/segments.c Example Program (1 of 2)

#include <unistd.h>

#define N (200)

int x = 0xdeadbeef;

int t1;

int t2;

int t3;

int array[4096];

char const *str = "Hello World\n";

const int z = 0xabcddcba;

struct example {

int ypos;

int xpos;

};
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The user/uw-testbin/segments.c Example Program (2 of 2)

int

main()

{

int count = 0;

const int value = 1;

t1 = N;

t2 = 2;

count = x + t1;

t2 = z + t2 + value;

reboot(RB_POWEROFF);

return 0; /* avoid compiler warnings */

}
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ELF Sections for the Example Program

Section Headers:
[Nr] Name Type Addr Off Size Flg
[ 0] NULL 00000000 000000 000000
[ 1] .text PROGBITS 00400000 010000 000200 AX
[ 2] .rodata PROGBITS 00400200 010200 000020 A
[ 3] .reginfo MIPS_REGINFO 00400220 010220 000018 A
[ 4] .data PROGBITS 10000000 020000 000010 WA
[ 5] .sbss NOBITS 10000010 020010 000014 WAp
[ 6] .bss NOBITS 10000030 020010 004000 WA
...
Flags: W (write), A (alloc), X (execute), p (processor specific)

## Size = number of bytes (e.g., .text is 0x200 = 512 bytes
## Off = offset into the ELF file
## Addr = virtual address

Thecs350-readelf program can be used to inspect OS/161 MIPS ELF
files: cs350-readelf -a segments
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ELF Segments for the Example Program

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
REGINFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R 0x4
LOAD 0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000
LOAD 0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

• segment info, like section info, can be inspected using thecs350-readelf
program

• the REGINFO section is not used

• the first LOAD segment includes the .text and .rodata sections

• the second LOAD segment includes .data, .sbss, and .bss
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Contents of the Example Program’s.text Section

Contents of section .text:

400000 3c1c1001 279c8000 2408fff8 03a8e824 <...’...$......$

...

## Decoding 3c1c1001 to determine instruction

## 0x3c1c1001 = binary 111100000111000001000000000001

## 0011 1100 0001 1100 0001 0000 0000 0001

## instr | rs | rt | immediate

## 6 bits | 5 bits| 5 bits| 16 bits

## 001111 | 00000 | 11100 | 0001 0000 0000 0001

## LUI | 0 | reg 28| 0x1001

## LUI | unused| reg 28| 0x1001

## Load upper immediate into rt (register target)

## lui gp, 0x1001

Thecs350-objdump program can be used to inspect OS/161 MIPS ELF

file section contents:cs350-objdump -s segments
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Contents of the Example Program’s.rodata Section

Contents of section .rodata:

400200 abcddcba 00000000 00000000 00000000 ................

400210 48656c6c 6f20576f 726c640a 00000000 Hello World.....

...

## const int z = 0xabcddcba

## If compiler doesn’t prevent z from being written,

## then the hardware could.

## 0x48 = ’H’ 0x65 = ’e’ 0x0a = ’\n’ 0x00 = ’\0’

The.rodata section contains the “Hello World” string literal and the con-

stant integer variablez.
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Contents of the Example Program’s.data Section

Contents of section .data:

10000000 deadbeef 00400210 00000000 00000000 .....@..........

...

## Size = 0x10 bytes = 16 bytes (padding for alignment)

## int x = deadbeef (4 bytes)

## char const *str = "Hello World\n"; (4 bytes)

## address of str = 0x10000004

## value stored in str = 0x00400210.

## NOTE: this is the address of the start

## of the string literal in the .rodata section

The.data section contains the initialized global variablesstr andx.
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Contents of the Example Program’s.bss and .sbss Sections

...
10000000 D x
10000004 D str
10000010 S t3 ## S indicates sbss section
10000014 S t2
10000018 S t1
1000001c S errno
10000020 S __argv
10000030 B array ## B indicates bss section
10004030 A _end
10008000 A _gp

Thet1, t2, andt3 variables are in the.sbss section. Thearray variable
is in the.bss section. There are no values for these variables in the ELF file,
as they are uninitialized. Thecs350-nm program can be used to inspect
symbols defined in ELF files:cs350-nm -n <filename>, in this case
cs350-nm -n segments.
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System Call Interface for Virtual Memory Management

• much memory allocation is implicit, e.g.:

– allocation for address space of new process

– implicit stack growth on overflow

• OS may support explicit requests to grow/shrink address space, e.g., Unixbrk

system call.

• shared virtual memory (simplified Solaris example):

Create: shmid = shmget(key,size)

Attach: vaddr = shmat(shmid, vaddr)

Detach: shmdt(vaddr)

Delete: shmctl(shmid,IPC RMID)
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Exploiting Secondary Storage

Goals:

• Allow virtual address spaces that are larger than the physical address space.

• Allow greater multiprogramming levels by using less of the available (primary)

memory for each process.

Method:

• Allow pages (or segments) from the virtual address space to be stored in

secondary memory, as well as primary memory.

• Move pages (or segments) between secondary and primary memory so that they

are in primary memory when they are needed.
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The Memory Hierarchy

BANDWIDTH (bytes/sec)

L1 Cache

(disk)
memory

secondary

10 9primary
memory

L2 Cache 10 6

10 12

10 4

SIZE (bytes)

10 8

10 6
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Large Virtual Address Spaces

• Virtual memory allows for very large virtual address spaces, and very large

virtual address spaces require large page tables.

• example:248 byte virtual address space,8 Kbyte (213 byte) pages,4 byte page

table entries means

248

213
22 = 237 bytes per page table

• page tables for large address spaces may be very large, and

– they must be in memory, and

– they must be physically contiguous

• some solutions:

– multi-level page tables - page the page tables

– inverted page tables
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Two-Level Paging

m bits
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page table base

frame # offsetpage # offsetpage #

physical address (m bits)
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level 2

page table

page tables
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Inverted Page Tables

• A normal page table maps virtual pages to physical frames. Aninverted page

table maps physical frames to virtual pages.

• Other key differences between normal and inverted page tables:

– there is only one inverted page table, not one table per process

– entries in an inverted page table must include a process identifier

• An inverted page table only specifies the location of virtualpages that are

located in memory. Some other mechanism (e.g., regular pagetables) must be

used to locate pages that are not in memory.

CS350 Operating Systems Fall 2013



Virtual Memory 49

Paging Policies

When to Page?:
Demand pagingbrings pages into memory when they are used. Alternatively,

the OS can attempt to guess which pages will be used, andprefetchthem.

What to Replace?:
Unless there are unused frames, one page must be replaced foreach page that is

loaded into memory. Areplacement policyspecifies how to determine which

page to replace.

Similar issues arise if (pure) segmentation is used, only the unit of data trans-

fer is segments rather than pages. Since segments may vary insize, segmen-

tation also requires aplacement policy, which specifies where, in memory, a

newly-fetched segment should be placed.
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Global vs. Local Page Replacement

• When the system’s page reference string is generated by morethan one process,

should the replacement policy take this into account?

Global Policy: A global policy is applied to all in-memory pages, regardless of

the process to which each one “belongs”. A page requested by process X

may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to

processes according to some memory allocation policy. A replacement

policy is then applied separately to each process’s allocated space. A page

requested by process X replaces another page that “belongs”to process X.
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Paging Mechanism

• A valid bit (V ) in each page table entry is used to track which pages are in
(primary) memory, and which are not.

V = 1: valid entry which can be used for translation

V = 0: invalid entry. If the MMU encounters an invalid page table entry, it
raises apage faultexception.

• To handle a page fault exception, the operating system must:

– Determine which page table entry caused the exception. (In SYS/161, and in
real MIPS processors, MMU puts the offending virtual address into a
register on the CP0 co-processor (register 8/c0vaddr/BadVaddr). The kernel
can read that register.

– Ensure that that page is brought into memory.

On return from the exception handler, the instruction that resulted in the page
fault will be retried.

• If (pure) segmentation is being used, there will be a valid bit in each segment
table entry to indicate whether the segment is in memory.
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A Simple Replacement Policy: FIFO

• the FIFO policy: replace the page that has been in memory the longest

• a three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x
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Optimal Page Replacement

• There is an optimal page replacement policy for demand paging.

• The OPT policy: replace the page that will not be referenced for the longest

time.

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a a a a c c c

Frame 2 b b b b b b b b b d d

Frame 3 c d d d e e e e e e

Fault ? x x x x x x x

• OPT requires knowledge of the future.
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Other Replacement Policies

• FIFO is simple, but it does not consider:

Frequency of Use: how often a page has been used?

Recency of Use:when was a page last used?

Cleanliness: has the page been changed while it is in memory?

• Theprinciple of localitysuggests that usage ought to be considered in a

replacement decision.

• Cleanliness may be worth considering for performance reasons.
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Locality

• Locality is a property of the page reference string. In otherwords, it is a

property of programs themselves.

• Temporal localitysays that pages that have been used recently are likely to be

used again.

• Spatial localitysays that pages “close” to those that have been used are likely to

be used next.

In practice, page reference strings exhibit strong locality. Why?
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Frequency-based Page Replacement

• Counting references to pages can be used as the basis for pagereplacement

decisions.

• Example: LFU (Least Frequently Used)

Replace the page with the smallest reference count.

• Any frequency-based policy requires a reference counting mechanism, e.g.,

MMU increments a counter each time an in-memory page is referenced.

• Pure frequency-based policies have several potential drawbacks:

– Old references are never forgotten. This can be addressed byperiodically

reducing the reference count of every in-memory page.

– Freshly loaded pages have small reference counts and are likely victims -

ignores temporal locality.
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Least Recently Used (LRU) Page Replacement

• LRU is based on the principle of temporal locality: replace the page that has not

been used for the longest time

• To implement LRU, it is necessary to track each page’s recency of use. For

example: maintain a list of in-memory pages, and move a page to the front of

the list when it is used.

• Although LRU and variants have many applications, LRU is often considered to

be impractical for use as a replacement policy in virtual memory systems. Why?
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Least Recently Used: LRU

• the same three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e c c c

Frame 2 b b b a a a a a a d d

Frame 3 c c c b b b b b b e

Fault ? x x x x x x x x x x
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The “Use” Bit

• A use bit(or reference bit) is a bit found in each TLB entry that:

– is set by the MMU each time the page is used, i.e., each time theMMU

translates a virtual address on that page

– can be read and modified by the operating system

– operating system copies use information into page table

• The use bit provides a small amount of efficiently-maintainable usage

information that can be exploited by a page replacement algorithm.

Entries in the MIPS TLB do not include a use bit.
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What if the MMU Does Not Provide a “Use” Bit?

• the kernel can emulate the “use” bit, at the cost of extra exceptions

1. When a page is loaded into memory, mark it asinvalid (even though it as

been loaded) and set its simulated “use” bit to false.

2. If a program attempts to access the page, an exception willoccur.

3. In its exception handler, the OS sets the page’s simulated“use” bit to “true”

and marks the pagevalid so that further accesses do not cause exceptions.

• This technique requires that the OS maintain extra bits of information for each

page:

1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory
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The Clock Replacement Algorithm

• The clock algorithm (also known as “second chance”) is one ofthe simplest

algorithms that exploits the use bit.

• Clock is identical to FIFO, except that a page is “skipped” ifits use bit is set.

• The clock algorithm can be visualized as a victim pointer that cycles through

the page frames. The pointer moves whenever a replacement isnecessary:

while use bit of victim is set

clear use bit of victim

victim = (victim + 1) % num_frames

choose victim for replacement

victim = (victim + 1) % num_frames
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Page Cleanliness: the “Modified” Bit

• A page ismodified(sometimes called dirty) if it has been changed since it was

loaded into memory.

• A modified page is more costly to replace than a clean page. (Why?)

• The MMU identifies modified pages by setting amodified bitin the TLB entry

when the contents of the page change.

• Operating system clears the modified bit when it cleans the page

• The modified bit potentially has two roles:

– Indicates which pages need to be cleaned.

– Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.
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What if the MMU Does Not Provide a “Modified” Bit?

• Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark it asread-only(even if it is

actually writeable) and set its simulated “modified” bit to false.

2. If a program attempts to modify the page, a protection exception will occur.

3. In its exception handler, if the page is supposed to be writeable, the OS sets

the page’s simulated “modified” bit to “true” and marks the page as

writeable.

• This technique requires that the OS maintain two extra bits of information for

each page:

1. the simulated “modified” bit

2. a “writeable” bit to indicate whether the page is supposedto be writeable
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Enhanced Second Chance Replacement Algorithm

• Classify pages according to their use and modified bits:

(0,0): not recently used, clean.

(0,1): not recently used, modified.

(1,0): recently used, clean

(1,1): recently used, modified

• Algorithm:

1. Sweep once looking for (0,0) page. Don’t clear use bits while looking.

2. If none found, look for (0,1) page, this time clearing “use” bits for bypassed

frames.

3. If step 2 fails, all use bits will be zero, repeat from step 1

(guaranteed to find a page).
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Page Cleaning

• A modified page must be cleaned before it can be replaced, otherwise changes

on that page will be lost.

• Cleaninga page means copying the page to secondary storage.

• Cleaning is distinct from replacement.

• Page cleaning may besynchronousor asynchronous:

synchronous cleaning:happens at the time the page is replaced, during page

fault handling. Page is first cleaned by copying it to secondary storage. Then

a new page is brought in to replace it.

asynchronous cleaning:happens before a page is replaced, so that page fault

handling can be faster.

– asynchronous cleaning may be implemented by dedicated OSpage

cleaning threadsthat sweep through the in-memory pages cleaning

modified pages that they encounter.
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Belady’s Anomaly

• FIFO replacement, 4 frames

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a e e e e d d

Frame 2 b b b b b b a a a a e

Frame 3 c c c c c c b b b b

Frame 4 d d d d d d c c c

Fault? x x x x x x x x x x

• FIFO example on Slide 52 with same reference string had 3 frames and only 9

faults.

More memory does not necessarily mean fewer page faults.
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Stack Policies

• Let B(m, t) represent the set of pages in the system withm frames of memory,

at timet, under some given replacement policy, for some given reference string.

• A replacement policy is called astack policyif, for all reference strings, allm

and allt:

B(m, t) ⊆ B(m+ 1, t)

• If a replacement algorithm imposes a total order, independent of the number of

frames (i.e., memory size), on the pages and it replaces the largest (or smallest)

page according to that order, then it satisfies the definitionof a stack policy.

• Examples: LRU is a stack algorithm. FIFO and CLOCK are not stack

algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.
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Prefetching

• Prefetching means moving virtual pages into memory before they are needed,

i.e., before a page fault results.

• The goal of prefetching islatency hiding: do the work of bringing a page into

memory in advance, not while a process is waiting.

• To prefetch, the operating system must guess which pages will be needed.

• Hazards of prefetching:

– guessing wrong means the work that was done to prefetch the page was

wasted

– guessing wrong means that some other potentially useful page has been

replaced by a page that is not used

• most common form of prefetching is simple sequential prefetching: if a process

uses pagex, prefetch pagex+ 1.

• sequential prefetching exploits spatial locality of reference
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Page Size

• the virtual memory page size must be understood by both the kernel and the

MMU

• some MMUs have support for a configurable page size

• advantages of larger pages

– smaller page tables

– largerTLB footprint

– more efficient I/O

• disadvantages of larger pages

– greater internal fragmentation

– increased chance of paging in unnecessary data

OS/161 on the MIPS uses a 4KB virtual memory page size.
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How Much Physical Memory Does a Process Need?

• Principle of locality suggests that some portions of the process’s virtual address

space are more likely to be referenced than others.

• A refinement of this principle is theworking set modelof process reference

behaviour.

• According to the working set model, at any given time some portion of a

program’s address space will be heavily used and the remainder will not be.

The heavily used portion of the address space is called theworking setof the

process.

• The working set of a process may change over time.

• Theresident setof a process is the set of pages that are located in memory.

According to the working set model, if a process’s resident set includes its

working set, it will rarely page fault.
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Resident Set Sizes (Example)

PID VSZ RSS COMMAND

805 13940 5956 /usr/bin/gnome-session

831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11

838 6964 2292 gnome-smproxy

840 14720 5008 gnome-settings-daemon

848 8412 3888 sawfish

851 34980 7544 nautilus

853 19804 14208 gnome-panel

857 9656 2672 gpilotd

867 4608 1252 gnome-name-service
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Refining the Working Set Model

• DefineWS(t,∆) to be the set of pages referenced by a given process during the

time interval(t−∆, t). WS(t,∆) is the working set of the process at timet.

• Define|WS(t,∆)| to be the size ofWS(t,∆), i.e., the number ofdistinct

pages referenced by the process.

• If the operating system could trackWS(t,∆), it could:

– use|WS(t,∆)| to determine the number of frames to allocate to the process

under a local page replacement policy

– useWS(t,∆) directly to implement a working-set based page replacement

policy: any page that is no longer in the working set is a candidate for

replacement
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Page Fault Frequency

• A more direct way to allocate memory to processes is to measure theirpage

fault frequencies- the number of page faults they generate per unit time.

• If a process’s page fault frequency is too high, it needs morememory. If it is

low, it may be able to surrender memory.

• The working set model suggests that a page fault frequency plot should have a

sharp “knee”.
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A Page Fault Frequency Plot

thresholds

page fault frequency curve
process 
page fault
frequency

low

high

manyfew

frames allocated to process
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Thrashing and Load Control

• What is a good multiprogramming level?

– If too low: resources are idle

– If too high: too few resources per process

• A system that is spending too much time paging is said to bethrashing.

Thrashing occurs when there are too many processes competing for the

available memory.

• Thrashing can be cured by load shedding, e.g.,

– Killing processes (not nice)

– Suspending andswapping outprocesses (nicer)
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Swapping Out Processes

• Swapping a process out means removing all of its pages from memory, or

marking them so that they will be removed by the normal page replacement

process. Suspending a process ensures that it is not runnable while it is swapped

out.

• Which process(es) to suspend?

– low priority processes

– blocked processes

– large processes (lots of space freed) or small processes (easier to reload)

• There must also be a policy for making suspended processes ready when system

load has decreased.
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