Interprocess Communication

Interprocess Communication Mechanisms

e shared storage

— shared virtual memory

— shared files

e message-based

— sockets
— pipes
signals

CS350

Operating Systems

Fall 2015

Interprocess Communication

Message Passing

Indirect Message Passing

_®]

Direct Message Passing

‘ operating system .
sender receiver
send . . receive
(operating systemw
sender : receiver
send receive

If message passing is indirect, the message passing sydtstrhave some
capacity to buffer (store) messages.

CS350

Operating Systems

Fall 2015

Interprocess Communication 3

Properties of Message Passing Mechanisms

Directionality:
e simplex (one-way), duplex (two-way)
e half-duplex (two-way, but only one way at a time)
Message Boundaries:
datagram model: message boundaries
stream model: no boundaries

Connections: need to connect before communicating?

e in connection-oriented models, recipient is specifiednaétof connection,
not by individual send operations. All messages sent ovenaection have
the same recipient.

e in connectionless models, recipient is specified as a pdearteeach send

operation.
Reliability:
e can messages get lost? reordered? damaged?
CS350 Operating Systems Fall 2015
Interprocess Communication 4
Sockets

e a socket is a communicatiamd-point
e if two processes are to communicate, each process muse @®atvn socket

e two common types of sockets

stream sockets: support connection-oriented, reliable, duplex commuiooa
under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duple
communication under the datagram model (message bousparie
¢ both types of sockets also support a variety of address dsnaig.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols

CS350 Operating Systems Fall 2015

Interprocess Communication 5

Using Datagram Sockets (Receiver)
s = socket (addressType, SOCK DGRAM ;

bi nd(s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

;:'I‘ose(s);

socket creates a socket

bi nd assigns an address to the socket

r ecvf r omreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

bothbuf andsour ceAddr ess are filled by the ecvf r omcall

CS350 Operating Systems Fall 2015

Interprocess Communication 6

Using Datagram Sockets (Sender)

s = socket (addressType, SOCK DGRAM ;
sendt o(s, buf, msgLengt h, t ar get Addr ess)

;:'I‘ose(S);

e socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent

— nmsgLengt h indicates the length of the message in the buffer

— tar get Addr ess is the address of the socket to which the message is to

be delivered

CS350 Operating Systems Fall 2015

Interprocess Communication 7

More on Datagram Sockets

e sendt o andr ecvf r omcallsmay block

— recvfromblocks if there are no messages to be received from the
specified socket

— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliabl
— messages (datagrams) may be lost

— messages may be reordered

e The sending process must know the address of the receivegg'ssocket.

CS350 Operating Systems Fall 2015

Interprocess Communication 8

Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM ;
bi nd(s, addr ess) ;

l'isten(s, backl og);

ns = accept (s, sourceAddress);
recv(ns, buf, buf Lengt h) ;

send(ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don’t accept nore connections

¢ | i st en specifies the number of connection requests for this sobkétill be
queued by the kernel

e accept accepts a connection request and creates a new sosket (
e recv receives up tiouf Lengt h bytes of data from the connection

e send sendsuf Lengt h bytes of data over the connection.

CS350 Operating Systems Fall 2015

Interprocess Communication 9

Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of the
socket that has made the connection request

¢ additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)

CS350 Operating Systems Fall 2015

Interprocess Communication 10

Using Stream Sockets (Active Process)

s = socket (addressType, SOCK _STREAM ;
connect (s, target Addr ess) ;

send(s, buf, buf Lengt h) ;

recv(s, buf, buf Lengt h) ;

;:.I‘ose(s);

e connect sends a connection request to the socket with the specifirdsxl
— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the $¢akengbi nd)
before connecting. This is the address that will be retutnetheaccept call
in the passive process

e if the active process does not choose an address, the sydtarthowse one

CS350 Operating Systems Fall 2015

Interprocess Communication 11

lllustration of Stream Socket Connections

y queue of connection request:

s [TTTH s
s2
s3
socket
process 1 process 2
(active) (passive)
process 3
(active)
CS350 Operating Systems Fall 2015
Interprocess Communication 12
Pipes

e pipes are communication objects (not end-points)
e pipes use the stream model and are connection-orientecchalble
e some pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits tnsg to
communication betweerelated processes, typically a child process and its
parent

e api pe() system call creates a pipe and returns two descriptors,arreath
end of the pipe
— for a simplex pipe, one descriptor is for reading, the othdoi writing
— for a duplex pipe, both descriptors can be used for readidghaiting

CS350 Operating Systems Fall 2015

Interprocess Communication 13

One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char n{] = "nessage for parent"”;

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

if (pid ==0) {
/1l child executes this
close(fd[0]); // close read end of pipe
wite(fd[1], m 19);

} else {
/'l parent executes this
close(fd[1]); // close wite end of pipe
read(fd[0],y, 19);

CS350 Operating Systems Fall 2015
Interprocess Communication 14

lllustration of Example (after pi pe())

parent process

CS350 Operating Systems Fall 2015

Interprocess Communication 15
lllustration of Example (after f ork())
parent process child process
CS350 Operating Systems Fall 2015
Interprocess Communication 16
lllustration of Example (after cl ose())
parent process child process
CS350 Operating Systems Fall 2015

Interprocess Communication 17

Examples of Other Interprocess Communication Mechanisms

named pipe:
e similar to pipes, but with an associated name (usually a &ilee)

e name allows arbitrary processes to communicate by opehagame
named pipe

e must be explicitly deleted, unlike an unnamed pipe
message queue:
¢ like a named pipe, except that there are message boundaries

e nsgsend call sends a message into the quatsgr ecv call receives the
next message from the queue

CS350 Operating Systems Fall 2015

Interprocess Communication 18

Implementing IPC

e application processes use descriptors (identifiers) geavby the kernel to refer
to specific sockets and pipes, as well as files and other gbject

e kerneldescriptor tables (or other similar mechanism) are used to associate
descriptors with kernel data structures that implementdBjects

e kernel provides bounded buffer space for data that has gmsing an IPC
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a pereabjbasis

— IPC end points, like sockets, buffering is associated waitheendpoint

L~

system call \\1 buffer
interface

L.~ system call
interface

operating system

CS350 Operating Systems Fall 2015

Interprocess Communication 19

Network Interprocess Communication
e some sockets can be used to connect processes that aregranrdifferent

machines

e the kernel:
— controls access to network interfaces
— multiplexes socket connections across the network

01020 @

| |
M SE U

Y g R / operating
negwork interface network interface| SYSteM
/\nen,\fy\

CS350 Operating Systems Fall 2015

operating \
system

Interprocess Communication 20

Signals

signals permit asynchronous one-way communication
— from a process to another process, or to a group of procesadke kernel

— from the kernel to a process, or to a group of processes

there are many types of signals

the arrival of a signal may cause the execution sgaal handler in the
receiving process

there may be a different handler for each type of signal

CS350 Operating Systems Fall 2015

Interprocess Communication 21

Examples of Signal Types

Si gnal Val ue Acti on Comment
SI A NT 2 Term Interrupt from keyboard
SIA LL 4 Core Il egal Instruction
SI &KI LL 9 Term Kill signal
SIGCHLD 20, 17, 18 I gn Chil d stopped or term nated
SI GBUS 10, 7, 10 Core Bus error

SI GXCPU 24, 24, 30 Core CPUtine limt exceeded
SI GSTOP 17,19, 23 St op Stop process

CS350 Operating Systems Fall 2015

Interprocess Communication 22

Signal Handling

operating system determines default signal handling fon @&w process

example default actions:
— ignore (do nothing)
— kill (terminate the process)

— stop (block the process)

a running process can change the default for some typesralsig

signal-related system calls
— calls to set non-default signal handlers, e.g., Wsibgnal , si gacti on
— calls to send signals, e.g., Unx | |

CS350 Operating Systems Fall 2015

