Interprocess Communication

Interprocess Communication Mechanisms

e shared storage

— shared virtual memory

— shared files

e message-based

— sockets
— pipes
signals
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Message Passing

Indirect Message Passing
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If message passing is indirect, the message passing sydtstrhave some
capacity to buffer (store) messages.
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Properties of Message Passing Mechanisms

Directionality:
e simplex (one-way), duplex (two-way)
e half-duplex (two-way, but only one way at a time)
Message Boundaries:
datagram model: message boundaries
stream model: no boundaries

Connections: need to connect before communicating?

e in connection-oriented models, recipient is specifiednaétof connection,
not by individual send operations. All messages sent ovenaection have
the same recipient.

e in connectionless models, recipient is specified as a pdearteeach send

operation.
Reliability:
e can messages get lost? reordered? damaged?
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Sockets

e a socket is a communicatiamd-point
e if two processes are to communicate, each process muse @®atvn socket

e two common types of sockets

stream sockets: support connection-oriented, reliable, duplex commuiooa
under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duple
communication under the datagram model (message bousparie
¢ both types of sockets also support a variety of address dsnaig.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols
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Using Datagram Sockets (Receiver)
s = socket (addressType, SOCK DGRAM ;

bi nd(s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

;:'I‘ose( s);

socket creates a socket

bi nd assigns an address to the socket

r ecvf r omreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

bothbuf andsour ceAddr ess are filled by the ecvf r omcall
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Using Datagram Sockets (Sender)

s = socket (addressType, SOCK DGRAM ;
sendt o( s, buf, msgLengt h, t ar get Addr ess)

;:'I‘ose( S);

e socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent

— nmsgLengt h indicates the length of the message in the buffer

— tar get Addr ess is the address of the socket to which the message is to

be delivered
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More on Datagram Sockets

e sendt o andr ecvf r omcallsmay block

— recvfromblocks if there are no messages to be received from the
specified socket

— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliabl
— messages (datagrams) may be lost

— messages may be reordered

e The sending process must know the address of the receivegg'ssocket.
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Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM ;
bi nd(s, addr ess) ;

l'isten(s, backl og);

ns = accept (s, sourceAddress);
recv(ns, buf, buf Lengt h) ;

send( ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don’t accept nore connections

¢ | i st en specifies the number of connection requests for this sobkétill be
queued by the kernel

e accept accepts a connection request and creates a new sosket (
e recv receives up tiouf Lengt h bytes of data from the connection

e send sendsuf Lengt h bytes of data over the connection.
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Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of the
socket that has made the connection request

¢ additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)
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Using Stream Sockets (Active Process)

s = socket (addressType, SOCK _STREAM ;
connect (s, target Addr ess) ;

send( s, buf, buf Lengt h) ;

recv(s, buf, buf Lengt h) ;

;:.I‘ose( s);

e connect sends a connection request to the socket with the specifirdsxl
— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the $¢akengbi nd)
before connecting. This is the address that will be retutnetheaccept call
in the passive process

e if the active process does not choose an address, the sydtarthowse one
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lllustration of Stream Socket Connections

y queue of connection request:

s [TTTH s
s2
s3
socket
process 1 process 2
(active) (passive)
process 3
(active)
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Pipes

e pipes are communication objects (not end-points)
e pipes use the stream model and are connection-orientecchalble
e some pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits tnsg to
communication betweerelated processes, typically a child process and its
parent

e api pe() system call creates a pipe and returns two descriptors,arreath
end of the pipe
— for a simplex pipe, one descriptor is for reading, the othdoi writing
— for a duplex pipe, both descriptors can be used for readidghaiting
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One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char n{] = "nessage for parent"”;

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

if (pid ==0) {
/1l child executes this
close(fd[0]); // close read end of pipe
wite(fd[ 1], m 19);

} else {
/'l parent executes this
close(fd[1]); // close wite end of pipe
read(fd[0],y, 19);
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lllustration of Example (after pi pe())

parent process
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lllustration of Example (after f ork())
parent process child process
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lllustration of Example (after cl ose())
parent process child process
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Examples of Other Interprocess Communication Mechanisms

named pipe:
e similar to pipes, but with an associated name (usually a &ilee)

e name allows arbitrary processes to communicate by opehagame
named pipe

e must be explicitly deleted, unlike an unnamed pipe
message queue:
¢ like a named pipe, except that there are message boundaries

e nsgsend call sends a message into the quatsgr ecv call receives the
next message from the queue
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Implementing IPC

e application processes use descriptors (identifiers) geavby the kernel to refer
to specific sockets and pipes, as well as files and other gbject

e kerneldescriptor tables (or other similar mechanism) are used to associate
descriptors with kernel data structures that implementdBjects

e kernel provides bounded buffer space for data that has gmsing an IPC
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a pereabjbasis

— IPC end points, like sockets, buffering is associated waitheendpoint

L~

system call \\1 buffer
interface

L.~ system call
interface

operating system
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Network Interprocess Communication
e some sockets can be used to connect processes that aregranrdifferent

machines

e the kernel:
— controls access to network interfaces
— multiplexes socket connections across the network
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Signals

signals permit asynchronous one-way communication
— from a process to another process, or to a group of procesadke kernel

— from the kernel to a process, or to a group of processes

there are many types of signals

the arrival of a signal may cause the execution sgaal handler in the
receiving process

there may be a different handler for each type of signal
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Examples of Signal Types

Si gnal Val ue Acti on Comment
SI A NT 2 Term Interrupt from keyboard
SIA LL 4 Core Il egal Instruction
SI &KI LL 9 Term Kill signal
SIGCHLD 20, 17, 18 I gn Chil d stopped or term nated
SI GBUS 10, 7, 10 Core Bus error

SI GXCPU 24, 24, 30 Core CPUtine limt exceeded
SI GSTOP 17,19, 23 St op Stop process
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Signal Handling

operating system determines default signal handling fon @&w process

example default actions:
— ignore (do nothing)
— kill (terminate the process)

— stop (block the process)

a running process can change the default for some typesralsig

signal-related system calls
— calls to set non-default signal handlers, e.g., Wsibgnal , si gacti on
— calls to send signals, e.g., Unx | |
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