Scheduling 1

Job Scheduling Model

e problem scenario: a set pfbsneeds to be executed using a single server, on
which only one job at a time may run

e for thesth job, we have an arrival time; and a run time-;

e after theith job has run on the server for total timg it finishes and leaves the
system

e ajobschedulemdecides which job should be running on the server at each poin
in time

e lets; (s; > a;) represent the time at which thih job first runs, and lef;
represent the time at which tlih job finishes
— theturnaround timeof theith job is f; — a;

— theresponse timef theith job iss; — a;

CS350 Operating Systems Fall 2015

Scheduling 2

Basic Non-Preemptive Schedulers: FCFS and SJF

e FCFS: runs jobs in arrival time order.
— simple, avoids starvation

— pre-emptive variant: round-robin

e SJF: shortest job first - run jobs in increasing order;of
— minimizes averag&rnaroundtime
— long jobs may starve

— pre-emptive variant: SRTF (shortest remaining time first)

CS350 Operating Systems Fall 2015

Scheduling 3

FCFS Gantt Chart Example

J1 [
J2 L
J3 i i i i i I
J4 i i i i i i i I
: : : : : : : : : : : > time
0 4 8 12 16 20
Job J1|J2|J3| J4
arrival (a;) 0
run time ;)

CS350 Operating Systems Fall 2015
Scheduling 4
SJF Example

Ji L
J3 [
J4 i i i —
: : : : : : : : : : : > time
0 4 8 12 16 20
Job J1|J2|J3| J4

arrival (a;) 0

run time ;)

CS350 Operating Systems Fall 2015

Scheduling 5

Round Robin Example

N
J2 — ? — ? I —
J3 ? — ? ? .
J4 ? ? ? ? =
: : : : : : : : : : : > time
0 4 8 12 16 20
Job J1[J2]J3]| J4
arrival (a;) 0
run time ;)

CS350 Operating Systems Fall 2015
Scheduling 6
SRTF Example

Ji N
J3 [
J4 § ¢ .
: : : : : : : : : : : > time
0 4 8 12 16 20
Job J1[J2]J3]| J4

arrival (a;) 0

run time ;)

CS350 Operating Systems Fall 2015

Scheduling 7

CPU Scheduling

e CPU scheduling is job scheduling where:
— the server is a CPU (or a single core of a multi-core CPU)

— the jobs areeady threads
x athread “arrives” when it becomes ready, i.e., when it i$ éirsated, or

when it wakes up from sleep
* the run-time of the thread is the amount of time that it wilh luefore it

either finishes or blocks
— thread run times are typicallyot knownin advance by the scheduler

e typical scheduler objectives
— responsiveness - lovesponse timér some or all threads
— “fair” sharing of the CPU
— efficiency - there is a cost to switching

CS350 Operating Systems Fall 2015

Scheduling 8

Prioritization

e CPU schedulers are often expected to consider processeadtpriorities

e priorities may be
— specified by the application (e.g., Linux
setpriority/sched_setschedul er)

— chosen by the scheduler

— some combination of these

e two approaches to scheduling with priorites
1. schedule the highest priority thread

2. weighted fair sharing
— let p; be the priority of theth thread
— try to give each thread a “share” of the CPU in proportion $gitiority:

Di
Zj pj @

CS350 Operating Systems Fall 2015

Scheduling 9

Multi-level Feedback Queues

e objective: good responsiveness ioteractiveprocesses
— threads of interactive processes block frequently, have stin times
e idea: gradually diminish priority of threads with long rumes and infrequent
blocking
— if a thread blocks before its quantum is usednase its priority
— if a thread uses its entire quantulonver its priority

CS350 Operating Systems Fall 2015

Scheduling 10

Multi-level Feedback Queues (Algorithm)

scheduler maintains several round-robin ready queues

— highest priority threads in queugy, lower priority inQ1, still lower in Q,
and so on.

scheduler always chooses thread from the lowest non-enujetyeq

threads in queu€); use quantung;, andg; < q; if 7 < j

newly ready threads go into ready quepg

a leveli thread that is preempted goes into quéye;

This basic algorithm magtarvethreads in lower queues. Various enhance-
ments can avoid this, e.g, periodically migrate all thraatisQ).

CS350 Operating Systems Fall 2015

Scheduling 11

3 Level Feedback Queue State Diagram

blocked

preempt

CS350 Operating Systems Fall 2015

Scheduling 12

Linux Completely Fair Scheduler (CFS) - Key Ideas

e “Completely Fair Scheduling” - a weighted fair sharing aggmh

e suppose that; is the actual amount of time that the scheduler has allowed th
ith thread to run.

>, P >, P
0 - 01 p1 -

e on anideally sharedprocessor, we would expec > =

>, P

pi

o CFS calls;
thread

thevirtual runtimeof the«th thread, and tracks it for each

e CFS chooses the thread with the lowest virtual runtime, and it until some
other thread’s virtual runtime is lower (subject to a minfimtuntime quantum)

— virtual runtime advances more slowly for higher priorityeghds, so they get
longer time slices

— all ready threads run regularly, so good responsiveness

CS350 Operating Systems Fall 2015

Scheduling 13

Scheduling on Multi-Core Processors

core

A

core

A

core

A

core

A

per core ready queue(s) VS. shared ready queue(

CS350 Operating Systems Fall 2015

Scheduling 14

Scalability and Cache Affinity

e Contention and Scalability
— access to shared ready queue is a critical section, mutalaiston needed
— as number of cores grows, contention for ready queue becampexlem

— per core desigscalesto a larger number of cores

e CPU cache affinity
— as thread runs, data it accesses is loaded into CPU cache(s)

— moving the thread to another core means data must be relaaddtat
core’s caches

as thread runs, it acquires affinity for one core because of the cached data

per core design benefits from affinity by keeping threads erséme core

shared queue design does not

CS350 Operating Systems Fall 2015

Scheduling 15

Load Balancing

in per-core design, queues may have different lengths

this results inoad imbalanceacross the cores
— cores may be idle while others are busy

— threads on lightly loaded cores get more CPU time than tisreadceavily
loaded cores

not an issue in shared queue design

per-core designs typically need some mechanisnthie@ad migrationto
address load imbalances

— migration means moving threads from heavily loaded cordightly loaded
cores

CS350 Operating Systems Fall 2015

