
File Systems 1

File Systems

key concepts

file, directory, link, open/close, descriptor, read, write, seek, file naming, block,

i-node, crash consistency, journaling

reading

Three Easy Pieces: Chapters 39-40,42

CS350 Operating Systems Fall 2017



File Systems 2

Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– file may change size over time

– file has associated meta-data

∗ examples: owner, access controls, file type, creation and access

timestamps

CS350 Operating Systems Fall 2017



File Systems 3

File Interface: Basics

• open

– open returns a file identifier (or handle or descriptor), which is used in

subsequent operations to identify the file.

– other operations (e.g., read, write) require file descriptor as a parameter

• close

– kernel tracks while file descriptors are currently valid for each process

– close invalidates a valid file descriptor

• read, write, seek

– read copies data from a file into a virtual address space

– write copies data from a virtual address space into a file

– seek enables non-sequential reading/writing

• get/set file meta-data, e.g., Unix fstat, chmod

CS350 Operating Systems Fall 2017



File Systems 4

File Read

��
��
��

��
��
�� ���

���
���
���

���
���
���
���

virtual address
   space

length

vaddr

length

file

fileoffset (implicit)

read(fileID, vaddr, length)

CS350 Operating Systems Fall 2017



File Systems 5

File Position and Seeks

• each file descriptor (open file) has an associated file position

• read and write operations

– start from the current file position

– update the current file position

• this makes sequential file I/O easy for an application to request

• seeks (lseek) are used for achieve non-sequential file I/O

– lseek changes the file position associated with a descriptor

– next read or write from that descriptor will use the new position

CS350 Operating Systems Fall 2017



File Systems 6

Sequential File Reading Example

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time.

CS350 Operating Systems Fall 2017



File Systems 7

File Reading Example Using Seek

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=1; i<=100; i++) {

lseek(f,(100-i)*512,SEEK_SET);

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time, in reverse order.

CS350 Operating Systems Fall 2017



File Systems 8

Directories and File Names

• A directory maps file names (strings) to i-numbers

– an i-number is a unique (within a file system) identifier for a file or directory

– given an i-number, the file system can find the data and meta-data for the file

• Directories provide a way for applications to group related files

• Since directories can be nested, a filesystem’s directories can be viewed as a

tree, with a single root directory.

• In a directory tree, files are leaves

• Files may be identified by pathnames, which describe a path through the

directory tree from the root directory to the file, e.g.:

/home/user/courses/cs350/notes/filesys.pdf

• Directories also have pathnames

• Applications refer to files using pathnames, not i-numbers

CS350 Operating Systems Fall 2017



File Systems 9

Hierarchical Namespace Example

= directory

= file

Key

2

312
14524

654
425 93

67
147

149

334
12

234 = i−number

bin docs

b.doc

a.txt

zam

testprogprivate

bar

foo

misc

temp

CS350 Operating Systems Fall 2017



File Systems 10

Links

• a hard link is an association between a name (string) and an i-number

– each entry in a directory is a hard link

• when a file is created, so is a hard link to that file

– open(/foo/misc/biz,O CREAT|O TRUNC)

– this creates a new file if a file called /foo/misc/biz does not already

exist

– it also creates a hard link to the file in the directory /foo/misc

• Once a file is created, additional hard links can be made to it.

– example: link(/docs/a.txt,/foo/myA) creates a new hard link

myA in directory /foo. The link refers to the i-number of file

/docs/a.txt, which must exist.

• linking to an existing file creates a new pathname for that file

– each file has a unique i-number, but may have multiple pathnames

• Not possible to link to a directory (to avoid cycles)

CS350 Operating Systems Fall 2017



File Systems 11

Hierarchical Namespace Example

= directory

= file

Key

2

312
14524

654
425 93

67
147

149

334
12

234 = i−number

myA

bin docs

b.doc

a.txt

zam

testprogprivate

foo

misc
bar

temp

CS350 Operating Systems Fall 2017



File Systems 12

Unlinking

• hard links can be removed:

– unlink(/docs/b.doc)

– this removes the link b.doc from the directory /docs

• when the last hard link to a file is removed, the file is also removed

– since there are no links to the file, it has no pathname, and can no longer be

opened

CS350 Operating Systems Fall 2017



File Systems 13

Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS/Windows: use two-part file names: file system name, pathname within

file system

– example: C:\user\cs350\schedule.txt

Unix: create single hierarchical namespace that combines the namespaces of

two file systems

– Unix mount system call does this

• mounting does not make two file systems into one file system

– it merely creates a single, hierarchical namespace that combines the

namespaces of two file systems

– the new namespace is temporary - it exists only until the file system is

unmounted

CS350 Operating Systems Fall 2017



File Systems 14

Unix mount Example

a

q

rx

g

a

q

rx

g

"root" file system file system X

result of mount (file system X, /x/a)

x y
z

a
b

ck la b

x y
z

a
b

ck la b

CS350 Operating Systems Fall 2017



File Systems 15

File System Implementation

• what needs to be stored persistently?

– file data

– file meta-data

– directories and links

– file system meta-data

• non-persistent information

– open files per process

– file position for each open file

– cached copies of persistent data

CS350 Operating Systems Fall 2017



File Systems 16

File System Example

• Use an extremely small disk as an example:

– 256 KB disk!

– Most disks have a sector size of 512 bytes

∗ Memory is usually byte addressable

∗ Disk is usually “sector addressable”

– 512 total sectors on this disk

• Group every 8 consecutive sectors into a block

– Better spatial locality (fewer seeks)

– Reduces the number of block pointers (we’ll see what this means soon)

– 4 KB block is a convenient size for demand paging

– 64 total blocks on this disk

CS350 Operating Systems Fall 2017



File Systems 17

VSFS: Very Simple File System (1 of 5)

• Most of the blocks should be for storing user data (last 56 blocks)

CS350 Operating Systems Fall 2017



File Systems 18

VSFS: Very Simple File System (2 of 5)

• Need some way to map files to data blocks

• Create an array of i-nodes, where each i-node contains the meta-data for a file

– The index into the array is the file’s index number (i-number)

• Assume each i-node is 256 bytes, and we dedicate 5 blocks for i-nodes

– This allows for 80 total i-nodes/files

CS350 Operating Systems Fall 2017



File Systems 19

VSFS: Very Simple File System (3 of 5)

• We also need to know which i-nodes and blocks are unused

• Many ways of doing this:

– In VSFS, we use a bitmap for each

– Can also use a free list instead of a bitmap

• A block size of 4 KB means we can track 32K i-nodes and 32K blocks

– This is far more than we actually need

CS350 Operating Systems Fall 2017



File Systems 20

VSFS: Very Simple File System (4 of 5)

• Reserve the first block as the superblock

• A superblock contains meta-information about the entire file system

– e.g., how many i-nodes and blocks are in the system, where the i-node table

begins, etc.

CS350 Operating Systems Fall 2017



File Systems 21

VSFS: Very Simple File System (5 of 5)

CS350 Operating Systems Fall 2017



File Systems 22

i-nodes

• An i-node is a fixed size index structure that holds both file meta-data and a

small number of pointers to data blocks

• i-node fields may include:

– file type

– file permissions

– file length

– number of file blocks

– time of last file access

– time of last i-node update, last file update

– number of hard links to this file

– direct data block pointers

– single, double, and triple indirect data block pointers

CS350 Operating Systems Fall 2017



File Systems 23

VSFS: i-node

• Assume disk blocks can be referenced based on a 4 byte address

– 2
32 blocks, 4 KB blocks

– Maximum disk size is 16 TB

• In VSFS, an i-node is 256 bytes

– Assume there is enough room for 12 direct pointers to blocks

– Each pointer points to a different block for storing user data

– Pointers are ordered: first pointer points to the first block in the file, etc.

• What is the maximum file size if we only have direct pointers?

– 12 * 4 KB = 48 KB

• Great for small files (which are common)

• Not so great if you want to store big files

CS350 Operating Systems Fall 2017



File Systems 24

VSFS: Indirect Blocks

• In addition to 12 direct pointers, we can also introduce an indirect pointer

– An indirect pointer points to a block full of direct pointers

• 4 KB block of direct pointers = 1024 pointers

– Maximum file size is: (12 + 1024) * 4 KB = 4144 KB

• This is more than enough for any file that can fit on our tiny 256KB disk, but

what if the disk were larger?

• Add a double indirect pointer

– Points to a 4 KB block of indirect pointers

– (12 + 1024 + 1024 * 1024) * 4 KB

– Just over 4 GB in size (is this enough?)

CS350 Operating Systems Fall 2017



File Systems 25

i-node Diagram

attribute values

single indirect

direct
direct
direct

data blocks

double indirect

triple indirect

indirect blocks

i−node (not to scale!)

CS350 Operating Systems Fall 2017



File Systems 26

File System Design

• File system parameters:

– How many i-nodes should a file system have?

– How many direct and indirect blocks should an i-node have?

– What is the “right” block size?

• For a general purpose file system, design it to be efficient for the common case

CS350 Operating Systems Fall 2017



File Systems 27

Directories

• Implemented as a special type of file.

• Directory file contains directory entries, each consisting of

– a file name (component of a path name) and the corresponding i-number

• Directory files can be read by application programs (e.g., ls)

• Directory files are only updated by the kernel, in response to file system

operations, e.g, create file, create link

• Application programs cannot write directly to directory files. (Why not?)

CS350 Operating Systems Fall 2017



File Systems 28

In-Memory (Non-Persistent) Structures

• per process

– descriptor table

∗ which file descriptors does this process have open?

∗ to which file does each open descriptor refer?

∗ what is the current file position for each descriptor?

• system wide

– open file table

∗ which files are currently open (by any process)?

– i-node cache

∗ in-memory copies of recently-used i-nodes

– block cache

∗ in-memory copies of data blocks and indirect blocks

CS350 Operating Systems Fall 2017



File Systems 29

Reading From a File (/foo/bar)

• First read the root i-node

– At “well known” position (i-node 2)

– i-node 1 is usually for tracking bad blocks

CS350 Operating Systems Fall 2017



File Systems 30

Reading From a File (/foo/bar)

• Read the directory information from root

– Find the i-number for foo

– Read the foo i-node

CS350 Operating Systems Fall 2017



File Systems 31

Reading From a File (/foo/bar)

• Read the directory information from foo

– Find the i-number for bar

– Read the bar i-node

CS350 Operating Systems Fall 2017



File Systems 32

Reading From a File (/foo/bar)

• Permission check (is the user allowed to read this file?)

• Allocate a file descriptor in the per-process descriptor table

• Increment the counter for this i-number in the global open file table

CS350 Operating Systems Fall 2017



File Systems 33

Reading From a File (/foo/bar)

• Find the block using a direct/indirect pointer and read the data

• Update the i-node with a new access time

• Update the file position in the per-process descriptor table

• Closing a file deallocates the file descriptor and decrements the counter for this

i-number in the global open file table

CS350 Operating Systems Fall 2017



File Systems 34

Creating a File (/foo/bar)

CS350 Operating Systems Fall 2017



File Systems 35

Problems Caused by Failures

• a single logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because of a failure, some but not all of these changes are reflected on

the disk?

• system failure will destroy in-memory file system structures

• persistent structures should be crash consistent, i.e., should be consistent

when system restarts after a failure

CS350 Operating Systems Fall 2017



File Systems 36

Fault Tolerance

• special-purpose consistency checkers (e.g., Unix fsck in Berkeley FFS, Linux

ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry

∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences of

changes can be written to disk in a single operation

– after changes have been journaled, update the disk data structures

(write-ahead logging)

– after a failure, redo journaled updates in case they were not done before the

failure

CS350 Operating Systems Fall 2017


