
Interprocess Communication 1

Interprocess Communication Mechanisms

• shared storage

– shared virtual memory

– shared files

• message-based

– sockets

– pipes

– signals

– . . .

CS350 Operating Systems Fall 2017

Interprocess Communication 2

Message Passing

operating system

sender receiver
send receive

operating system

sender receiver
send receive

Direct Message Passing

Indirect Message Passing

If message passing is indirect, the message passing system must have some

capacity to buffer (store) messages.

CS350 Operating Systems Fall 2017



Interprocess Communication 3

Properties of Message Passing Mechanisms

Directionality:

• simplex (one-way), duplex (two-way)

• half-duplex (two-way, but only one way at a time)

Message Boundaries:

datagram model: message boundaries

stream model: no boundaries

Connections: need to connect before communicating?

• in connection-oriented models, recipient is specified at time of connection,

not by individual send operations. All messages sent over a connection have

the same recipient.

• in connectionless models, recipient is specified as a parameter to each send

operation.

Reliability:

• can messages get lost? reordered? damaged?

CS350 Operating Systems Fall 2017

Interprocess Communication 4

Sockets

• a socket is a communication end-point

• if two processes are to communicate, each process must create its own socket

• two common types of sockets

stream sockets: support connection-oriented, reliable, duplex communication

under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex

communication under the datagram model (message boundaries)

• both types of sockets also support a variety of address domains, e.g.,

Unix domain: useful for communication between processes running on the

same machine

INET domain: useful for communication between process running on

different machines that can communicate using IP protocols.

CS350 Operating Systems Fall 2017



Interprocess Communication 5

Using Datagram Sockets (Receiver)

s = socket(addressType, SOCK_DGRAM);

bind(s,address);

recvfrom(s,buf,bufLength,sourceAddress);

. . .

close(s);

• socket creates a socket

• bind assigns an address to the socket

• recvfrom receives a message from the socket

– buf is a buffer to hold the incoming message

– sourceAddress is a buffer to hold the address of the message sender

• both buf and sourceAddress are filled by the recvfrom call

CS350 Operating Systems Fall 2017

Interprocess Communication 6

Using Datagram Sockets (Sender)

s = socket(addressType, SOCK_DGRAM);

sendto(s,buf,msgLength,targetAddress)

. . .

close(s);

• socket creates a socket

• sendto sends a message using the socket

– buf is a buffer that contains the message to be sent

– msgLength indicates the length of the message in the buffer

– targetAddress is the address of the socket to which the message is to

be delivered

CS350 Operating Systems Fall 2017



Interprocess Communication 7

More on Datagram Sockets

• sendto and recvfrom calls may block

– recvfrom blocks if there are no messages to be received from the

specified socket

– sendto blocks if the system has no more room to buffer undelivered

messages

• datagram socket communications are (in general) unreliable

– messages (datagrams) may be lost

– messages may be reordered

• The sending process must know the address of the receive process’s socket.

CS350 Operating Systems Fall 2017

Interprocess Communication 8

Using Stream Sockets (Passive Process)

s = socket(addressType, SOCK_STREAM);

bind(s,address);

listen(s,backlog);

ns = accept(s,sourceAddress);

recv(ns,buf,bufLength);

send(ns,buf,bufLength);

. . .

close(ns); // close accepted connection

close(s); // don’t accept more connections

• listen specifies the number of connection requests for this socket that will be

queued by the kernel

• accept accepts a connection request and creates a new socket (ns)

• recv receives up to bufLength bytes of data from the connection

• send sends bufLength bytes of data over the connection.

CS350 Operating Systems Fall 2017



Interprocess Communication 9

Notes on Using Stream Sockets (Passive Process)

• accept creates a new socket (ns) for the new connection

• sourceAddress is an address buffer. accept fills it with the address of the

socket that has made the connection request

• additional connection requests can be accepted using more accept calls on

the original socket (s)

• accept blocks if there are no pending connection requests

• connection is duplex (both send and recv can be used)

CS350 Operating Systems Fall 2017

Interprocess Communication 10

Using Stream Sockets (Active Process)

s = socket(addressType, SOCK_STREAM);

connect(s,targetAddress);

send(s,buf,bufLength);

recv(s,buf,bufLength);

. . .

close(s);

• connect sends a connection request to the socket with the specified address

– connect blocks until the connection request has been accepted

• active process may (optionally) bind an address to the socket (using bind)

before connecting. This is the address that will be returned by the accept call

in the passive process

• if the active process does not choose an address, the system will choose one

CS350 Operating Systems Fall 2017



Interprocess Communication 11

Illustration of Stream Socket Connections

(active)

(active)

(passive)

s s

s2

s3

process 1 process 2

process 3

queue of connection requests

socket

CS350 Operating Systems Fall 2017

Interprocess Communication 12

Pipes

• pipes are communication objects (not end-points)

• pipes use the stream model and are connection-oriented and reliable

• some pipes are simplex, some are duplex

• pipes use an implicit addressing mechanism that limits their use to

communication between related processes, typically a child process and its

parent

• a pipe() system call creates a pipe and returns two descriptors, one for each

end of the pipe

– for a simplex pipe, one descriptor is for reading, the other is for writing

– for a duplex pipe, both descriptors can be used for reading and writing

CS350 Operating Systems Fall 2017



Interprocess Communication 13

One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char m[] = "message for parent";

char y[100];

pipe(fd); // create pipe

pid = fork(); // create child process

if (pid == 0) {

// child executes this

close(fd[0]); // close read end of pipe

write(fd[1],m,19);

. . .

} else {

// parent executes this

close(fd[1]); // close write end of pipe

read(fd[0],y,19);

. . .

}

CS350 Operating Systems Fall 2017

Interprocess Communication 14

Illustration of Example (after pipe())

parent process

CS350 Operating Systems Fall 2017



Interprocess Communication 15

Illustration of Example (after fork())

parent process child process

CS350 Operating Systems Fall 2017

Interprocess Communication 16

Illustration of Example (after close())

parent process child process

CS350 Operating Systems Fall 2017



Interprocess Communication 17

Examples of Other Interprocess Communication Mechanisms

named pipe:

• similar to pipes, but with an associated name (usually a file name)

• name allows arbitrary processes to communicate by opening the same

named pipe

• must be explicitly deleted, unlike an unnamed pipe

message queue:

• like a named pipe, except that there are message boundaries

• msgsend call sends a message into the queue, msgrecv call receives the

next message from the queue

CS350 Operating Systems Fall 2017

Interprocess Communication 18

Implementing IPC

• application processes use descriptors (identifiers) provided by the kernel to refer

to specific sockets and pipes, as well as files and other objects

• kernel descriptor tables (or other similar mechanism) are used to associate

descriptors with kernel data structures that implement IPC objects

• kernel provides bounded buffer space for data that has been sent using an IPC

mechanism, but that has not yet been received

– for IPC objects, like pipes, buffering is usually on a per object basis

– IPC end points, like sockets, buffering is associated with each endpoint

P1 P2

system call
interface

system call
interface

buffer

operating system

CS350 Operating Systems Fall 2017



Interprocess Communication 19

Network Interprocess Communication

• some sockets can be used to connect processes that are running on different

machines

• the kernel:

– controls access to network interfaces

– multiplexes socket connections across the network

P2 P3P1

network interface

P2 P3P1

network interface

network

operating
system

operating
system

CS350 Operating Systems Fall 2017

Interprocess Communication 20

Signals

• signals permit asynchronous one-way communication

– from a process to another process, or to a group of processes, via the kernel

– from the kernel to a process, or to a group of processes

• there are many types of signals

• the arrival of a signal may cause the execution of a signal handler in the

receiving process

• there may be a different handler for each type of signal

CS350 Operating Systems Fall 2017



Interprocess Communication 21

Examples of Signal Types

Signal Value Action Comment

-------------------------------------------------

SIGINT 2 Term Interrupt from keyboard

SIGILL 4 Core Illegal Instruction

SIGKILL 9 Term Kill signal

SIGCHLD 20,17,18 Ign Child stopped or terminated

SIGBUS 10,7,10 Core Bus error

SIGXCPU 24,24,30 Core CPU time limit exceeded

SIGSTOP 17,19,23 Stop Stop process

CS350 Operating Systems Fall 2017

Interprocess Communication 22

Signal Handling

• operating system determines default signal handling for each new process

• example default actions:

– ignore (do nothing)

– kill (terminate the process)

– stop (block the process)

• a running process can change the default for some types of signals

• signal-related system calls

– calls to set non-default signal handlers, e.g., Unix signal, sigaction

– calls to send signals, e.g., Unix kill

CS350 Operating Systems Fall 2017


