
Processes and the Kernel 1

Processes and System Calls

key concepts

process,system call,processor exception,fork/execv,multiprocessing

reading

Three Easy Pieces: Chapter 4 (Processes), Chapter 5 (Process API), Chapter 6

(Direct Execution)

CS350 Operating Systems Fall 2017



Processes and the Kernel 2

What is a Process?

A process is an environment in which an application program runs.

• a process includes virtualized resources that its program can use:

– one (or more) threads

– virtual memory, used for the program’s code and data

– other resources, e.g., file and socket descriptors

• processes are created and managed by the kernel

• each program’s process isolates it from other programs in other processes

CS350 Operating Systems Fall 2017



Processes and the Kernel 3

System Calls

• System calls are the interface between processes and the kernel.

• A process uses system calls to request operating system services.

• Some examples:

Service OS/161 Examples

create,destroy,manage processes fork,execv,waitpid,getpid

create,destroy,read,write files open,close,remove,read,write

manage file system and directories mkdir,rmdir,link,sync

interprocess communication pipe,read,write

manage virtual memory sbrk

query,manage system reboot, time

CS350 Operating Systems Fall 2017



Processes and the Kernel 4

System Call Software Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel

CS350 Operating Systems Fall 2017



Processes and the Kernel 5

Kernel Privilege

• Kernel code runs at a higher level of execution privilege than application code

– privilege levels are implemented by the CPU

• The kernel’s higher privilege level allows it to do things that the CPU prevents

less-privileged (application) programs from doing. For example:

– application programs cannot modify the page tables that the kernel uses to

implement process virtual memories

– application programs cannot halt the CPU

• These restrictions allow the kernel to keep processes isolated from one another -

and from the kernel.

Application programs cannot directly call kernel functions or access kernel

data structures.

CS350 Operating Systems Fall 2017



Processes and the Kernel 6

How System Calls Work (Part 1)

Since application programs can’t directly call the kernel, how does a program

make a system call?

• There are only two things that make kernel code run:

– Interrupts

∗ interrupts are generated by devices

∗ an interrupt means a device (hardware) needs attention

– Exceptions

∗ exceptions are caused by instruction execution

∗ an exception means that a running program needs attention

CS350 Operating Systems Fall 2017



Processes and the Kernel 7

Interrupts, Revisited

• We have described interrupts already. Remember:

– An interrupt causes the hardware to transfer control to a fixed location in

memory, where an interrupt handler is located

• Interrupt handlers are part of the kernel

– If an interrupt occurs while an application program is running, control will

jump from the application to the kernel’s interrupt handler

• When an interrupt occurs, the processor switches to privileged execution mode

when it transfers control to the interrupt handler

– This is how the kernel gets its execution privilege

CS350 Operating Systems Fall 2017



Processes and the Kernel 8

Exceptions

• Exceptions are conditions that occur during the execution of a program

instruction.

– Examples: arithmetic overflows, illegal instructions, or page faults (to be

discussed later).

• Exceptions are detected by the CPU during instruction execution

• The CPU handles exceptions like it handles interrupts:

– control is transferred to a fixed location, where an exception handler is

located

– the processor is switched to privileged execution mode

• The exception handler is part of the kernel

CS350 Operating Systems Fall 2017



Processes and the Kernel 9

MIPS Exception Types

EX_IRQ 0 /* Interrupt */

EX_MOD 1 /* TLB Modify (write to read-only page) */

EX_TLBL 2 /* TLB miss on load */

EX_TLBS 3 /* TLB miss on store */

EX_ADEL 4 /* Address error on load */

EX_ADES 5 /* Address error on store */

EX_IBE 6 /* Bus error on instruction fetch */

EX_DBE 7 /* Bus error on data load *or* store */

EX_SYS 8 /* Syscall */

EX_BP 9 /* Breakpoint */

EX_RI 10 /* Reserved (illegal) instruction */

EX_CPU 11 /* Coprocessor unusable */

EX_OVF 12 /* Arithmetic overflow */

On the MIPS, the same mechanism handles exceptions and interrupts, and

there is a single handler for both in the kernel. The handler uses these codes

to determine what triggered it to run.

CS350 Operating Systems Fall 2017



Processes and the Kernel 10

How System Calls Work (Part 2)

• To perform a system call, the application program needs to cause an exception

to make the kernel execute:

– on the MIPS, EX SYS is the system call exception

• To cause this exception on the MIPS, the application executes a special purpose

instruction: syscall

– other processor instruction sets include similar instructions, e.g., syscall

on x86

• The kernel’s exception handler checks the exception code (set by the CPU when

the exception is generated) to distinguish system call exceptions from other

types of exceptions.

CS350 Operating Systems Fall 2017



Processes and the Kernel 11

System Call Software Stack (again)

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5

CS350 Operating Systems Fall 2017



Processes and the Kernel 12

System Call Timeline

1. application calls library wrapper function for desired system call

2. library function performs syscall instruction

3. kernel exception handler runs

• creates trap frame to save application program state

• determines that this is a system call exception

• determines which system call is being requested

• does the work for the requested system call

• restores the application program state from the trap frame

• returns from the exception

4. library wrapper function finishes and returns from its call

5. application continues execution

CS350 Operating Systems Fall 2017



Processes and the Kernel 13

Which System Call?

• Q. There are many different system calls, but only one syscall exception.

How does the kernel know which system call the application is requesting?

• A. system call codes

– the kernel defines a code for each system call it understands

– the kernel expects the application to place a code in a specified location

before executing the syscall instruction

∗ for OS/161 on the MIPS, the code goes in register v0

– the kernel’s exception handler checks this code to determine which system

call has been requested

– the codes and code location are part of the kernel ABI (Application Binary

Interface)

CS350 Operating Systems Fall 2017



Processes and the Kernel 14

Some OS/161 System Call Codes

...

#define SYS_fork 0

#define SYS_vfork 1

#define SYS_execv 2

#define SYS__exit 3

#define SYS_waitpid 4

#define SYS_getpid 5

...

This comes from kern/include/kern/syscall.h. The files in

kern/include/kern define things (like system call codes) that must be

known by both the kernel and applications.

CS350 Operating Systems Fall 2017



Processes and the Kernel 15

System Call Parameters

• Q. System calls take parameters and return values, like function calls. How

does this work, since system calls are really just exceptions?

• A. The application places parameter values in kernel-specified locations before

the syscall, and looks for return values in kernel-specified locations after the

exception handler returns

– The locations are part of the kernel ABI

– Parameter and return value placement is handled by the application system

call library functions

– On the MIPS

∗ parameters go in registers a0,a1,a2,a3

∗ result success/fail code is in a3 on return

∗ return value or error code is in v0 on return

CS350 Operating Systems Fall 2017



Processes and the Kernel 16

User and Kernel Stacks

• Every OS/161 process thread has two stacks, although it only uses one at a time

– User (Application) Stack: used while application code is executing

∗ this stack is located in the application’s virtual memory

∗ it holds activation records for application functions

∗ the kernel creates this stack when it sets up the virtual address memory

for the process

– Kernel Stack: used while the thread is executing kernel code, after an

exception or interrupt

∗ this stack is a kernel structure

∗ in OS/161, the t stack field of the thread structure points to this

stack

∗ this stack holds activation records for kernel functions

∗ this stack also holds trap frames and switch frames (because the kernel

creates trap frames and switch frames)

CS350 Operating Systems Fall 2017



Processes and the Kernel 17

Exception Handling in OS/161

• first to run is careful assembly code that

– saves the application stack pointer

– switches the stack pointer to point to the thread’s kernel stack

– carefully saves application state and the address of the instruction that was

interrupted in a trap frame on the thread’s kernel stack

– calls mips trap, passing a pointer to the trap frame as a parameter

• after mips trap is finished, the handler will

– restore application state (including the application stack pointer) from the

trap frame on the thread’s kernel stack

– jump back to the application instruction that was interrupted, and switch

back to unprivileged execution mode

• see kern/arch/mips/locore/exception-mips1.S

CS350 Operating Systems Fall 2017



Processes and the Kernel 18

mips trap

• mips trap determines what type of exception this is by looking at the

exception code: interrupt? system call? something else?

• there is a separate handler in the kernel for each type of exception:

– interrupt? call mainbus interrupt

– address translation exception? call vm fault (important for later

assignments!)

– system call? call syscall (kernel function), passing it the trap frame

pointer

– syscall is in kern/arch/mips/syscall/syscall.c

• see kern/arch/mips/locore/trap.c

CS350 Operating Systems Fall 2017



Processes and the Kernel 19

Multiprocessing

• Multiprocessing (or multitasking) means having multiple processes existing at

the same time

• All processes share the available hardware resources, with the sharing

coordinated by the operating system:

– Each process’ virtual memory is implemented using some of the available

physical memory. The OS decides how much memory each process gets.

– Each process’ threads are scheduled onto the available CPUs (or CPU cores)

by the OS.

– Processes share access to other resources (e.g., disks, network devices, I/O

devices) by making system calls. The OS controls this sharing.

• The OS ensures that processes are isolated from one another. Interprocess

communication should be possible, but only at the explicit request of the

processes involved.

CS350 Operating Systems Fall 2017



Processes and the Kernel 20

Multiprocessing Example

KernelProcess A Process B

context
switches

timer interrupt

interrupt return

ready thread

running thread

Key:

Two process’ threads timesharing a single CPU.

CS350 Operating Systems Fall 2017



Processes and the Kernel 21

System Calls for Process Management

Linux OS/161

Creation fork,execv fork,execv

Destruction exit,kill exit

Synchronization wait,waitpid,pause,. . . waitpid

Attribute Mgmt getpid,getuid,nice,getrusage,. . . getpid

CS350 Operating Systems Fall 2017



Processes and the Kernel 22

fork, exit, and waitpid

• fork creates a new process (the child) that is a clone of the original (the

parent)

– after fork, both parent and child are executing copies of the same program

– virtual memories of parent and child are identical at the time of the fork, but

may diverge afterwards

– fork is called by the parent, but returns in both the parent and the child

∗ parent and child see different return values from fork

• exit terminates the process that calls it

– process can supply an exit status code when it exits

– kernel records the exit status code in case another process asks for it (via

waitpid)

• waitpid lets a process wait for another to terminate, and retrieve its exit status

code

CS350 Operating Systems Fall 2017



Processes and the Kernel 23

The fork, exit, getpid and waitpid system calls

main() {

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) { /* child executes this code */

my_pid = getpid();

x = child_code();

_exit(x);

} else { /* parent executes this code */

child_pid = rc;

parent_pid = getpid();

parent_code();

p = waitpid(child_pid,&child_exit,0);

if (WIFEXITED(child_exit))

printf("child exit status was %d\n",

WEXITSTATUS(child_exit))

}

}

CS350 Operating Systems Fall 2017



Processes and the Kernel 24

The execv system call

• execv changes the program that a process is running

• The calling process’s current virtual memory is destroyed

• The process gets a new virtual memory, initialized with the code and data of the

new program to run

• After execv, the new program starts executing

CS350 Operating Systems Fall 2017



Processes and the Kernel 25

execv example

int main()

{

int rc = 0;

char *args[4];

args[0] = (char *) "/testbin/argtest";

args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);

printf("If you see this execv failed\n");

printf("rc = %d errno = %d\n", rc, errno);

exit(0);

}

CS350 Operating Systems Fall 2017



Processes and the Kernel 26

Combining fork and execv

main()

{

char *args[4];

/* set args here */

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) {

status = execv("/testbin/argtest",args);

printf("If you see this execv failed\n");

printf("status = %d errno = %d\n", status, errno);

exit(0);

} else {

child_pid = rc;

parent_code();

p = waitpid(child_pid,&child_exit,0);

}

}

CS350 Operating Systems Fall 2017


