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Processes and System Calls

key concepts

process,system call,processor exception,fork/execv,multiprocessing

reading

Three Easy Pieces: Chapter 4 (Processes), Chapter 5 (Process API), Chapter 6

(Direct Execution)
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What is a Process?

A process is an environment in which an application program runs.

• a process includes virtualized resources that its program can use:

– one (or more) threads

– virtual memory, used for the program’s code and data

– other resources, e.g., file and socket descriptors

• processes are created and managed by the kernel

• each program’s process isolates it from other programs in other processes
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System Calls

• System calls are the interface between processes and the kernel.

• A process uses system calls to request operating system services.

• Some examples:

Service OS/161 Examples

create,destroy,manage processes fork,execv,waitpid,getpid

create,destroy,read,write files open,close,remove,read,write

manage file system and directories mkdir,rmdir,link,sync

interprocess communication pipe,read,write

manage virtual memory sbrk

query,manage system reboot, time
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System Call Software Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel
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Kernel Privilege

• Kernel code runs at a higher level of execution privilege than application code

– privilege levels are implemented by the CPU

• The kernel’s higher privilege level allows it to do things that the CPU prevents

less-privileged (application) programs from doing. For example:

– application programs cannot modify the page tables that the kernel uses to

implement process virtual memories

– application programs cannot halt the CPU

• These restrictions allow the kernel to keep processes isolated from one another -

and from the kernel.

Application programs cannot directly call kernel functions or access kernel

data structures.
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How System Calls Work (Part 1)

Since application programs can’t directly call the kernel, how does a program

make a system call?

• There are only two things that make kernel code run:

– Interrupts

∗ interrupts are generated by devices

∗ an interrupt means a device (hardware) needs attention

– Exceptions

∗ exceptions are caused by instruction execution

∗ an exception means that a running program needs attention

CS350 Operating Systems Fall 2017



Processes and the Kernel 7

Interrupts, Revisited

• We have described interrupts already. Remember:

– An interrupt causes the hardware to transfer control to a fixed location in

memory, where an interrupt handler is located

• Interrupt handlers are part of the kernel

– If an interrupt occurs while an application program is running, control will

jump from the application to the kernel’s interrupt handler

• When an interrupt occurs, the processor switches to privileged execution mode

when it transfers control to the interrupt handler

– This is how the kernel gets its execution privilege
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Exceptions

• Exceptions are conditions that occur during the execution of a program

instruction.

– Examples: arithmetic overflows, illegal instructions, or page faults (to be

discussed later).

• Exceptions are detected by the CPU during instruction execution

• The CPU handles exceptions like it handles interrupts:

– control is transferred to a fixed location, where an exception handler is

located

– the processor is switched to privileged execution mode

• The exception handler is part of the kernel
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MIPS Exception Types

EX_IRQ 0 /* Interrupt */

EX_MOD 1 /* TLB Modify (write to read-only page) */

EX_TLBL 2 /* TLB miss on load */

EX_TLBS 3 /* TLB miss on store */

EX_ADEL 4 /* Address error on load */

EX_ADES 5 /* Address error on store */

EX_IBE 6 /* Bus error on instruction fetch */

EX_DBE 7 /* Bus error on data load *or* store */

EX_SYS 8 /* Syscall */

EX_BP 9 /* Breakpoint */

EX_RI 10 /* Reserved (illegal) instruction */

EX_CPU 11 /* Coprocessor unusable */

EX_OVF 12 /* Arithmetic overflow */

On the MIPS, the same mechanism handles exceptions and interrupts, and

there is a single handler for both in the kernel. The handler uses these codes

to determine what triggered it to run.
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How System Calls Work (Part 2)

• To perform a system call, the application program needs to cause an exception

to make the kernel execute:

– on the MIPS, EX SYS is the system call exception

• To cause this exception on the MIPS, the application executes a special purpose

instruction: syscall

– other processor instruction sets include similar instructions, e.g., syscall

on x86

• The kernel’s exception handler checks the exception code (set by the CPU when

the exception is generated) to distinguish system call exceptions from other

types of exceptions.
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System Call Software Stack (again)

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5
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System Call Timeline

1. application calls library wrapper function for desired system call

2. library function performs syscall instruction

3. kernel exception handler runs

• creates trap frame to save application program state

• determines that this is a system call exception

• determines which system call is being requested

• does the work for the requested system call

• restores the application program state from the trap frame

• returns from the exception

4. library wrapper function finishes and returns from its call

5. application continues execution
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Which System Call?

• Q. There are many different system calls, but only one syscall exception.

How does the kernel know which system call the application is requesting?

• A. system call codes

– the kernel defines a code for each system call it understands

– the kernel expects the application to place a code in a specified location

before executing the syscall instruction

∗ for OS/161 on the MIPS, the code goes in register v0

– the kernel’s exception handler checks this code to determine which system

call has been requested

– the codes and code location are part of the kernel ABI (Application Binary

Interface)
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Some OS/161 System Call Codes

...

#define SYS_fork 0

#define SYS_vfork 1

#define SYS_execv 2

#define SYS__exit 3

#define SYS_waitpid 4

#define SYS_getpid 5

...

This comes from kern/include/kern/syscall.h. The files in

kern/include/kern define things (like system call codes) that must be

known by both the kernel and applications.
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System Call Parameters

• Q. System calls take parameters and return values, like function calls. How

does this work, since system calls are really just exceptions?

• A. The application places parameter values in kernel-specified locations before

the syscall, and looks for return values in kernel-specified locations after the

exception handler returns

– The locations are part of the kernel ABI

– Parameter and return value placement is handled by the application system

call library functions

– On the MIPS

∗ parameters go in registers a0,a1,a2,a3

∗ result success/fail code is in a3 on return

∗ return value or error code is in v0 on return
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User and Kernel Stacks

• Every OS/161 process thread has two stacks, although it only uses one at a time

– User (Application) Stack: used while application code is executing

∗ this stack is located in the application’s virtual memory

∗ it holds activation records for application functions

∗ the kernel creates this stack when it sets up the virtual address memory

for the process

– Kernel Stack: used while the thread is executing kernel code, after an

exception or interrupt

∗ this stack is a kernel structure

∗ in OS/161, the t stack field of the thread structure points to this

stack

∗ this stack holds activation records for kernel functions

∗ this stack also holds trap frames and switch frames (because the kernel

creates trap frames and switch frames)
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Exception Handling in OS/161

• first to run is careful assembly code that

– saves the application stack pointer

– switches the stack pointer to point to the thread’s kernel stack

– carefully saves application state and the address of the instruction that was

interrupted in a trap frame on the thread’s kernel stack

– calls mips trap, passing a pointer to the trap frame as a parameter

• after mips trap is finished, the handler will

– restore application state (including the application stack pointer) from the

trap frame on the thread’s kernel stack

– jump back to the application instruction that was interrupted, and switch

back to unprivileged execution mode

• see kern/arch/mips/locore/exception-mips1.S
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mips trap

• mips trap determines what type of exception this is by looking at the

exception code: interrupt? system call? something else?

• there is a separate handler in the kernel for each type of exception:

– interrupt? call mainbus interrupt

– address translation exception? call vm fault (important for later

assignments!)

– system call? call syscall (kernel function), passing it the trap frame

pointer

– syscall is in kern/arch/mips/syscall/syscall.c

• see kern/arch/mips/locore/trap.c
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Multiprocessing

• Multiprocessing (or multitasking) means having multiple processes existing at

the same time

• All processes share the available hardware resources, with the sharing

coordinated by the operating system:

– Each process’ virtual memory is implemented using some of the available

physical memory. The OS decides how much memory each process gets.

– Each process’ threads are scheduled onto the available CPUs (or CPU cores)

by the OS.

– Processes share access to other resources (e.g., disks, network devices, I/O

devices) by making system calls. The OS controls this sharing.

• The OS ensures that processes are isolated from one another. Interprocess

communication should be possible, but only at the explicit request of the

processes involved.
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Multiprocessing Example

KernelProcess A Process B

context
switches

timer interrupt

interrupt return

ready thread

running thread

Key:

Two process’ threads timesharing a single CPU.
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System Calls for Process Management

Linux OS/161

Creation fork,execv fork,execv

Destruction exit,kill exit

Synchronization wait,waitpid,pause,. . . waitpid

Attribute Mgmt getpid,getuid,nice,getrusage,. . . getpid

CS350 Operating Systems Fall 2017



Processes and the Kernel 22

fork, exit, and waitpid

• fork creates a new process (the child) that is a clone of the original (the

parent)

– after fork, both parent and child are executing copies of the same program

– virtual memories of parent and child are identical at the time of the fork, but

may diverge afterwards

– fork is called by the parent, but returns in both the parent and the child

∗ parent and child see different return values from fork

• exit terminates the process that calls it

– process can supply an exit status code when it exits

– kernel records the exit status code in case another process asks for it (via

waitpid)

• waitpid lets a process wait for another to terminate, and retrieve its exit status

code
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The fork, exit, getpid and waitpid system calls

main() {

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) { /* child executes this code */

my_pid = getpid();

x = child_code();

_exit(x);

} else { /* parent executes this code */

child_pid = rc;

parent_pid = getpid();

parent_code();

p = waitpid(child_pid,&child_exit,0);

if (WIFEXITED(child_exit))

printf("child exit status was %d\n",

WEXITSTATUS(child_exit))

}

}
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The execv system call

• execv changes the program that a process is running

• The calling process’s current virtual memory is destroyed

• The process gets a new virtual memory, initialized with the code and data of the

new program to run

• After execv, the new program starts executing
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execv example

int main()

{

int rc = 0;

char *args[4];

args[0] = (char *) "/testbin/argtest";

args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);

printf("If you see this execv failed\n");

printf("rc = %d errno = %d\n", rc, errno);

exit(0);

}
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Combining fork and execv

main()

{

char *args[4];

/* set args here */

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) {

status = execv("/testbin/argtest",args);

printf("If you see this execv failed\n");

printf("status = %d errno = %d\n", status, errno);

exit(0);

} else {

child_pid = rc;

parent_code();

p = waitpid(child_pid,&child_exit,0);

}

}
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