
Synchronization 1

Synchronization

key concepts

critical sections, mutual exclusion, test-and-set, spinlocks, blocking and blocking

locks, semaphores, condition variables, deadlocks

reading

Three Easy Pieces: Chapters 28-32

CS350 Operating Systems Fall 2017

Synchronization 2

Thread Synchronization

• All threads in a concurrent program share access to the program’s global

variables and the heap.

• The part of a concurrent program in which a shared object is accessed is called

a critical section.

• What happens if several threads try to access the same global variable or heap

object at the same time?

CS350 Operating Systems Fall 2017



Synchronization 3

Critical Section Example

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

} }

If one thread executes add and another executes sub what is the value of

total when they have finished?

CS350 Operating Systems Fall 2017

Synchronization 4

Critical Section Example (assembly detail)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

CS350 Operating Systems Fall 2017



Synchronization 5

Critical Section Example (Trace 1)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

sw R9 0(R8) total=1

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

One possible order of execution. Final value of total is 0.

CS350 Operating Systems Fall 2017

Synchronization 6

Critical Section Example (Trace 2)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT and context switch>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

...

<INTERRUPT and context switch>

sw R9 0(R8) total=1

One possible order of execution. Final value of total is 1.

CS350 Operating Systems Fall 2017



Synchronization 7

Critical Section Example (Trace 3)

Thread 1 Thread 2

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) R9=0 lw R11 0(R10) R11=0

add R9 1 R9=1 sub R11 1 R11=-1

sw R9 0(R8) total=1

sw R11 0(R10) total=-1

Another possible order of execution, this time on two processors. Final value

of total is -1.

CS350 Operating Systems Fall 2017

Synchronization 8

About volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

add R9 1 sub R11 1

} }

sw R9 0(R8) sw R11 0(R10)

} }

Without volatile the compiler could optimize the code. volatile

forces the compiler to load and store the value on every use.

CS350 Operating Systems Fall 2017



Synchronization 9

Another Critical Section Example (Part 1)

int list remove front(list *lp) {
int num;

list element *element;

assert(!is empty(lp));

element = lp->first;

num = lp->first->item;

if (lp->first == lp->last) {
lp->first = lp->last = NULL;

} else {
lp->first = element->next;

}
lp->num_in_list--;

free(element);

return num;

}

The list remove front function is a critical section. It may not work

properly if two threads call it at the same time on the same list. (Why?)

CS350 Operating Systems Fall 2017

Synchronization 10

Another Critical Section Example (Part 2)

void list append(list *lp, int new item) {

list element *element = malloc(sizeof(list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {

lp->first = element; lp->last = element;

} else {

lp->last->next = element; lp->last = element;

}

lp->num in list++;

}

The list append function is part of the same critical section as

list remove front. It may not work properly if two threads call

it at the same time, or if a thread calls it while another has called

list remove front

CS350 Operating Systems Fall 2017



Synchronization 11

Mutual Exclusion

int volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

----------- mutual exclusion start -------------

total++; total--;

----------- mutual exclusion end ---------------

} }

} }

To prevent race conditions, we can enforce mutual exclusion on critical sec-

tions in the code.

CS350 Operating Systems Fall 2017

Synchronization 12

Enforcing Mutual Exclusion With Locks

int volatile total = 0;

/* lock for total: false => free, true => locked */

bool volatile total lock = false;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

Acquire(&total lock); Acquire(&total lock);

total++; total--;

Release(&total lock); Release(&total lock);

} }

} }

Acquire/Release must ensure that only one thread at a time can hold the lock,

even if both attempt to Acquire at the same time. If a thread cannot Acquire

the lock immediately, it must wait until the lock is available.

CS350 Operating Systems Fall 2017



Synchronization 13

Lock Aquire and Release - First Try

Acquire(bool *lock) {

while (*lock == true) ; /* spin until lock is free */

*lock = true; /* grab the lock */

}

Release(book *lock) {

*lock = false; /* give up the lock */

}

This simple approach does not work! (Why?)

CS350 Operating Systems Fall 2017

Synchronization 14

Hardware-Specific Synchronization Instructions

• used to implement synchronization primitives like locks

• provide a way to test and set a lock in a single atomic (indivisible) operation

• example: x86 xchg instruction:

xchg src,addr

where src is typically a register, and addr is a memory address. Value in

register src is written to memory at address addr, and the old value at addr

is placed into src.

• logical behavior of xchg can be thought of as an atomic function that behaves

like this:

Xchg(value,addr) {

old = *addr;

*addr = value;

return(old);

}

CS350 Operating Systems Fall 2017



Synchronization 15

Lock Aquire and Release with Xchg

Acquire(bool *lock) {

while (Xchg(true,lock) == true) ;

}

Release(book *lock) {

*lock = false; /* give up the lock */

}

If Xchg returns true, the lock was already set, and we must continue to

loop. If Xchg returns false, then the lock was free, and we have now

acquired it.

This construct is known as a spin lock, since a thread busy-waits (loops) in

Acquire until the lock is free.

CS350 Operating Systems Fall 2017

Synchronization 16

Other Synchronization Instructions

• SPARC cas instruction

cas addr,R1,R2

if value at addr matches value in R1 then swap contents of addr and R2

• Compare-And-Swap

CompareAndSwap(addr,expectedval,newval)

old = *addr; // get old value at addr

if (old == expectedval) *addr = newval;

return old;

• MIPS load-linked and store-conditional

– Load-linked returns the current value of a memory location, while a

subsequent store-conditional to the same memory location will store a new

value only if no updates have occurred to that location since the load-linked.

CS350 Operating Systems Fall 2017



Synchronization 17

Spinlocks in OS/161

struct spinlock {

volatile spinlock_data_t lk_lock;

struct cpu *lk_holder;

};

void spinlock_init(struct spinlock *lk}

void spinlock_acquire(struct spinlock *lk);

void spinlock_release(struct spinlock *lk);

spinlock acquire calls spinlock data testandset in a loop

until the lock is acquired.

CS350 Operating Systems Fall 2017

Synchronization 18

Using Load-Linked / Store-Conditional

/* return value 0 indicates lock was acquired */

spinlock_data_testandset(volatile spinlock_data_t *sd)

{

spinlock_data_t x,y;

y = 1;

__asm volatile(

".set push;" /* save assembler mode */

".set mips32;" /* allow MIPS32 instructions */

".set volatile;" /* avoid unwanted optimization */

"ll %0, 0(%2);" /* x = *sd */

"sc %1, 0(%2);" /* *sd = y; y = success? */

".set pop" /* restore assembler mode */

: "=r" (x), "+r" (y) : "r" (sd));

if (y == 0) { return 1; }

return x;

}

CS350 Operating Systems Fall 2017



Synchronization 19

OS/161 Locks

• In addition to spinlocks, OS/161 also has locks.

• Like spinlocks, locks are used to enforce mutual exclusion.

struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

• spinlocks spin, locks block:

– a thread that calls spinlock acquire spins until the lock can be

acquired

– a thread that calls lock acquire blocks until the lock can be acquired

CS350 Operating Systems Fall 2017

Synchronization 20

Thread Blocking

• Sometimes a thread will need to wait for something, e.g.:

– wait for a lock to be released by another thread

– wait for data from a (relatively) slow device

– wait for input from a keyboard

– wait for busy device to become idle

• When a thread blocks, it stops running:

– the scheduler chooses a new thread to run

– a context switch from the blocking thread to the new thread occurs,

– the blocking thread is queued in a wait queue (not on the ready list)

• Eventually, a blocked thread is signaled and awakened by another thread.

CS350 Operating Systems Fall 2017



Synchronization 21

Wait Channels in OS/161

• wait channels are used to implement thread blocking in OS/161

– void wchan sleep(struct wchan *wc);

∗ blocks calling thread on wait channel wc

∗ causes a context switch, like thread yield

– void wchan wakeall(struct wchan *wc);

∗ unblock all threads sleeping on wait channel wc

– void wchan wakeone(struct wchan *wc);

∗ unblock one thread sleeping on wait channel wc

– void wchan lock(struct wchan *wc);

∗ prevent operations on wait channel wc

∗ more on this later!

• there can be many different wait channels, holding threads that are blocked for

different reasons.

CS350 Operating Systems Fall 2017

Synchronization 22

Thread States, Revisited

• a very simple thread state transition diagram

ready

blocked

dispatch

need resource or eventgot resource or event

running

or thread_yield()

(wchan_sleep())(wchan_wakeone/all())

preemption

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

• ready threads are queued on the ready queue, blocked threads are queued on

wait channels

CS350 Operating Systems Fall 2017



Synchronization 23

Semaphores

• A semaphore is a synchronization primitive that can be used to enforce mutual

exclusion requirements. It can also be used to solve other kinds of

synchronization problems.

• A semaphore is an object that has an integer value, and that supports two

operations:

P: if the semaphore value is greater than 0, decrement the value. Otherwise,

wait until the value is greater than 0 and then decrement it.

V: increment the value of the semaphore

By definition, the P and V operations of a semaphore are atomic.

CS350 Operating Systems Fall 2017

Synchronization 24

Mutual Exclusion Using a Semaphore

volatile int total = 0;

struct semaphore *total sem;

total sem = sem create("total mutex",1); /* initial value is

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P(sem); P(sem);

total++; total--;

V(sem); V(sem);

} }

} }

CS350 Operating Systems Fall 2017



Synchronization 25

Producer/Consumer Synchronization with Bounded Buffer

• suppose we have threads (producers) that add items to a buffer and threads

(consumers) that remove items from the buffer

• suppose we want to ensure that consumers do not consume if the buffer is

empty - instead they must wait until the buffer has something in it

• similarly, suppose the buffer has a finite capacity (N ), and we need to ensure

that producers must wait if the buffer is full

• this requires synchronization between consumers and producers

• semaphores can provide the necessary synchronization

CS350 Operating Systems Fall 2017

Synchronization 26

Bounded Buffer Producer/Consumer Synchronization with Semaphores

struct semaphore *Items,*Spaces;

Items = sem create("Buffer Items", 0); /* initially = 0 */

Spaces = sem create("Buffer Spaces", N);/* initially = N */

Producer’s Pseudo-code:

P(Spaces);

add item to the buffer

V(Items);

Consumer’s Pseudo-code:

P(Items);

remove item from the buffer

V(Spaces);

CS350 Operating Systems Fall 2017



Synchronization 27

Condition Variables

• OS/161 supports another common synchronization primitive: condition

variables

• each condition variable is intended to work together with a lock: condition

variables are only used from within the critical section that is protected by the

lock

• three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases the lock associated

with the condition variable. Once the thread is unblocked it reacquires the

lock.

signal: If threads are blocked on the signaled condition variable, then one of

those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the

condition variable.

CS350 Operating Systems Fall 2017

Synchronization 28

Using Condition Variables

• Condition variables get their name because they allow threads to wait for

arbitrary conditions to become true inside of a critical section.

• Normally, each condition variable corresponds to a particular condition that is

of interest to an application. For example, in the bounded buffer

producer/consumer example on the following slides, the two conditions are:

– count > 0 (there are items in the buffer)

– count < N (there is free space in the buffer)

• when a condition is not true, a thread can wait on the corresponding condition

variable until it becomes true

• when a thread detects that a condition is true, it uses signal or broadcast

to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that has no

waiters has no effect. Signals do not accumulate.

CS350 Operating Systems Fall 2017



Synchronization 29

Waiting on Condition Variables

• when a blocked thread is unblocked (by signal or broadcast), it

reacquires the lock before returning from the wait call

• a thread is in the critical section when it calls wait, and it will be in the critical

section when wait returns. However, in between the call and the return, while

the caller is blocked, the caller is out of the critical section, and other threads

may enter.

• In particular, the thread that calls signal (or broadcast) to wake up the

waiting thread will itself be in the critical section when it signals. The waiting

thread will have to wait (at least) until the signaller releases the lock before it

can unblock and return from the wait call.

This describes Mesa-style condition variables, which are used in OS/161.

There are alternative condition variable semantics (Hoare semantics), which

differ from the semantics described here.

CS350 Operating Systems Fall 2017

Synchronization 30

Bounded Buffer Producer Using Locks and Condition Variables

int volatile count = 0; /* must initially be 0 */

struct lock *mutex; /* for mutual exclusion */

struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created

* using lock create() and cv create() before Produce()

* and Consume() are called */

Produce(itemType item) {
lock acquire(mutex);

while (count == N) {
cv wait(notfull, mutex); /* wait until buffer is not full

}
add item to buffer (call list append())

count = count + 1;

cv signal(notempty, mutex); /* signal that buffer is not empty

lock release(mutex);

}

CS350 Operating Systems Fall 2017



Synchronization 31

Bounded Buffer Consumer Using Locks and Condition Variables

itemType Consume() {

lock acquire(mutex);

while (count == 0) {

cv wait(notempty, mutex); /* wait until buffer is not emtpy

}

remove item from buffer (call list remove front())

count = count - 1;

cv signal(notfull, mutex); /* signal that buffer is not full

lock release(mutex);

return(item);

}

Both Produce() and Consume() call cv wait() inside of a while

loop. Why?

CS350 Operating Systems Fall 2017

Synchronization 32

Deadlocks

• Suppose there are two threads and two locks, lockA and lockB, both initially

unlocked.

• Suppose the following sequence of events occurs

1. Thread 1 does lock acquire(lockA).

2. Thread 2 does lock acquire(lockB).

3. Thread 1 does lock acquire(lockB) and blocks, because lockB is

held by thread 2.

4. Thread 2 does lock acquire(lockA) and blocks, because lockA is

held by thread 1.

These two threads are deadlocked - neither thread can make progress. Wait-

ing will not resolve the deadlock. The threads are permanently stuck.

CS350 Operating Systems Fall 2017



Synchronization 33

Two Techniques for Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has

resources allocated to it. A thread may hold several resources, but to do so it

must make a single request for all of them.

Resource Ordering: Order (e.g., number) the resource types, and require that each

thread acquire resources in increasing resource type order. That is, a thread may

make no requests for resources of type less than or equal to i if it is holding

resources of type i.

CS350 Operating Systems Fall 2017


