
CS350: Operating Systems

Lecture 12: File systems

Ali Mashtizadeh

University of Waterloo

1 / 39

File system fun

• File systems: traditionally hardest part of OS
I More papers on FSes than any other single topic

• Main tasks of file system:
I Don’t go away (ever)
I Associate bytes with name (files)
I Associate names with each other (directories)
I Can implement file systems on disk, over network, in memory, in non-volatile ram (NVRAM),

on tape, w/ paper.
I We’ll focus on disk and generalize later

• Today: files, directories, and a bit of performance

2 / 39

Why disks are different

• Disk = First state we’ve seen that doesn’t go away

diskmemory
CRASH!

I So: Where all important state ultimately resides
• Slow (milliseconds access vs. nanoseconds for memory)

normalized
speed

year

Processor speed: 2×/18mo

Disk access time: 7%/yr

• Huge (100–1,000x bigger than memory)
I How to organize large collection of ad hoc information?
I Taxonomies! (Basically FS = general way to make these)

3 / 39

Disk vs. Memory

MLC NAND
Disk Flash DRAM

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 75 µs 50 ns
Random write 8 ms 300 µs* 50 ns
Sequential read 100 MB/s 250 MB/s > 1 GB/s
Sequential write 100 MB/s 170 MB/s* > 1 GB/s
Cost $0.04/GB $0.65/GB $10/GiB
Persistence Non-volatile Non-volatile Volatile

*Flash write performance degrades over time

4 / 39

Disk review

• Disk reads/writes in terms of sectors, not bytes
I Read/write single sector or adjacent groups

• How to write a single byte? “Read-modify-write”
I Read in sector containing the byte
I Modify that byte
I Write entire sector back to disk
I Key: if cached, don’t need to read in

• Sector = unit of atomicity.
I Sector write done completely, even if crash in middle

(disk saves up enough momentum to complete)
• Larger atomic units have to be synthesized by OS

5 / 39

Some useful trends

• Disk bandwidth and cost/bit improving exponentially
I Similar to CPU speed, memory size, etc.

• Seek time and rotational delay improving very slowly
I Why? require moving physical object (disk arm)

• Disk accesses a huge system bottleneck & getting worse
I Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as small

chunk.
I Trade bandwidth for latency if you can get lots of related stuff.
I How to get related stuff? Cluster together on disk

• Desktop memory size increasing faster than typical workloads
I More and more of workload fits in file cache
I Disk traffic changes: mostly writes and new data
I Doesn’t necessarily apply to big server-side jobs

6 / 39

Files: named bytes on disk

• File abstraction:
I User’s view: named sequence of bytes

I FS’s view: collection of disk blocks
I File system’s job: translate name & offset to disk blocks:

{file, offset}−−−→ FS −−−→disk address

• File operations:
I Create a file, delete a file
I Read from file, write to file

• Want: operations to have as few disk accesses as possible & have minimal space overhead
(group related things)

7 / 39

What’s hard about grouping blocks?

• Like page tables, file system metadata are simply data structures used to construct
mappings

I Page table: map virtual page # to physical page #
23−−−−−−−−−−→ Page table −−−−−−−−−−→33

I File metadata: map byte offset to disk block address
512−−−−−−−−−→ Unix inode −−−−−→8003121

I Directory: map name to disk address or file #
foo.c−−−−−−−−→ directory −−−−−−−−−−→44

8 / 39

FS vs. VM

• In both settings, want location transparency
• In some ways, FS has easier job than than VM:

I CPU time to do FS mappings not a big deal (= no TLB)
I Page tables deal with sparse address spaces and random access, files often denser

(0 . . . filesize− 1), ∼sequentially accessed

• In some ways FS’s problem is harder:
I Each layer of translation = potential disk access
I Space a huge premium! (But disk is huge?!?!) Reason?

Cache space never enough; amount of data you can get in one fetch never enough
I Range very extreme: Many files <10 KB, some files many GB

9 / 39

Some working intuitions

• FS performance dominated by # of disk accesses
I Say each access costs ∼10 milliseconds
I Touch the disk 100 extra times = 1 second
I Can do a billion ALU ops in same time!

• Access cost dominated by movement, not transfer:
seek time + rotational delay+ # bytes/disk-bw

I 1 sector: 5ms + 4ms + 5µs (≈ 512 B/(100 MB/s)) ≈ 9ms
I 50 sectors: 5ms + 4ms + .25ms = 9.25ms
I Can get 50x the data for only ∼3% more overhead!

• Observations that might be helpful:
I All blocks in file tend to be used together, sequentially
I All files in a directory tend to be used together
I All names in a directory tend to be used together

10 / 39

Common addressing patterns

• Sequential:
I File data processed in sequential order
I By far the most common mode
I Example: editor writes out new file, compiler reads in file, etc

• Random access:
I Address any block in file directly without passing through predecessors
I Examples: data set for demand paging, databases

• Keyed access
I Search for block with particular values
I Examples: associative data base, index
I Usually not provided by OS

11 / 39

Problem: how to track file’s data

• Disk management:
I Need to keep track of where file contents are on disk
I Must be able to use this to map byte offset to disk block
I Structure tracking a file’s sectors is called an index node or inode
I Inodes must be stored on disk, too

• Things to keep in mind while designing file structure:
I Most files are small
I Much of the disk is allocated to large files
I Many of the I/O operations are made to large files
I Want good sequential and good random access

(what do these require?)

12 / 39

Straw man: contiguous allocation

• “Extent-based”: allocate files like segmented memory
I When creating a file, make the user pre-specify its length and allocate all space at once
I Inode contents: location and size

• Example: IBM OS/360
• Pros?

I Simple, fast access, both sequential and random

• Cons? (Think of corresponding VM scheme)

I External fragmentation

13 / 39

Straw man: contiguous allocation

• “Extent-based”: allocate files like segmented memory
I When creating a file, make the user pre-specify its length and allocate all space at once
I Inode contents: location and size

• Example: IBM OS/360
• Pros?

I Simple, fast access, both sequential and random

• Cons? (Think of corresponding VM scheme)
I External fragmentation

13 / 39

Linked files

• Basically a linked list on disk.
I Keep a linked list of all free blocks
I Inode contents: a pointer to file’s first block
I In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT
• Pros?

I Easy dynamic growth & sequential access, no fragmentation

• Cons?

I Linked lists on disk a bad idea because of access times
I Pointers take up room in block, skewing alignment

14 / 39

Linked files

• Basically a linked list on disk.
I Keep a linked list of all free blocks
I Inode contents: a pointer to file’s first block
I In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT
• Pros?

I Easy dynamic growth & sequential access, no fragmentation
• Cons?

I Linked lists on disk a bad idea because of access times
I Pointers take up room in block, skewing alignment

14 / 39

Example: DOS FS (simplified)

• Uses linked files. Cute: links reside in fixed-sized “file allocation table” (FAT) rather than
in the blocks.

Directory (5)
a: 6
b: 2

FAT (16-bit entries)

free0
eof1
12

eof3
34

eof5
46

. . .

6
file a

4 3

2
file b

1

• Still do pointer chasing, but can cache entire FAT so can be cheap compared to disk access

15 / 39

FAT discussion

• Entry size = 16 bits
I What’s the maximum size of the FAT?

65,536 entries

I Given a 512 byte block, what’s the maximum size of FS?

32 MiB

I One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:
I 2 bytes / 512 byte block = ∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?
I Create duplicate copies of FAT on disk
I State duplication a very common theme in reliability

• Bootstrapping: where is root directory?

I Fixed location on disk:

16 / 39

FAT discussion

• Entry size = 16 bits
I What’s the maximum size of the FAT? 65,536 entries
I Given a 512 byte block, what’s the maximum size of FS? 32 MiB
I One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:
I 2 bytes / 512 byte block = ∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?
I Create duplicate copies of FAT on disk
I State duplication a very common theme in reliability

• Bootstrapping: where is root directory?

I Fixed location on disk:

16 / 39

Indexed files

• Each file has an array holding all of it’s block pointers
I Just like a page table, so will have similar issues
I Max file size fixed by array’s size (static or dynamic?)
I Allocate array to hold file’s block pointers on file creation
I Allocate actual blocks on demand using free list

• Pros?

I Both sequential and random access easy

• Cons?

I Mapping table requires large chunk of contiguous space
. . . Same problem we were trying to solve initially

17 / 39

Indexed files

• Each file has an array holding all of it’s block pointers
I Just like a page table, so will have similar issues
I Max file size fixed by array’s size (static or dynamic?)
I Allocate array to hold file’s block pointers on file creation
I Allocate actual blocks on demand using free list

• Pros?
I Both sequential and random access easy

• Cons?
I Mapping table requires large chunk of contiguous space

. . . Same problem we were trying to solve initially
17 / 39

Indexed files

• Issues same as in page tables

I Large possible file size = lots of unused entries
I Large actual size? table needs large contiguous disk chunk

• Solve identically: small regions with index array, this array with another array, . . .
Downside?

18 / 39

Multi-level indexed files (old BSD FS)

• Solve problem of first block access slow
• inode = 14 block pointers + “stuff”

19 / 39

Old BSD FS discussion

• Pros:
I Simple, easy to build, fast access to small files
I Maximum file length fixed, but large.

• Cons:
I What is the worst case # of accesses?
I What is the worst-case space overhead? (e.g., 13 block file)

• An empirical problem:
I Because you allocate blocks by taking them off unordered freelist, metadata and data get

strewn across disk

20 / 39

More about inodes

• Inodes are stored in a fixed-size array
I Size of array fixed when disk is initialized; can’t be changed
I Lives in known location, originally at one side of disk:

I Now is smeared across it (why?)

I The index of an inode in the inode array called an i-number
I Internally, the OS refers to files by inumber
I When file is opened, inode brought in memory
I Written back when modified and file closed or time elapses

21 / 39

Directories

• Problem:
I “Spend all day generating data, come back the next morning, want to use it.” – F. Corbato, on

why files/dirs invented

• Approach 0: Have users remember where on disk their files are
I (E.g., like remembering your social security or bank account #)

• Yuck. People want human digestible names
I We use directories to map names to file blocks

• Next: What is in a directory and why?

22 / 39

A short history of directories

• Approach 1: Single directory for entire system
I Put directory at known location on disk
I Directory contains 〈name, inumber〉 pairs
I If one user uses a name, no one else can
I Many ancient personal computers work this way

• Approach 2: Single directory for each user
I Still clumsy, and ls on 10,000 files is a real pain

• Approach 3: Hierarchical name spaces
I Allow directory to map names to files or other dirs
I File system forms a tree (or graph, if links allowed)
I Large name spaces tend to be hierarchical (ip addresses, domain names, scoping in

programming languages, etc.)

23 / 39

Hierarchical Unix

• Used since CTSS (1960s)
I Unix picked up and used really nicely

• Directories stored on disk just like regular files
I Special inode type byte set to directory
I User’s can read just like any other file
I Only special syscalls can write (why?)
I Inodes at fixed disk location
I File pointed to by the index may be

another directory
I Makes FS into hierarchical tree (what needed to make a

DAG?)

<name,inode#>
<afs,1021>
<tmp,1020>
<bin,1022>

<cdrom,4123>
<dev,1001>

<sbin,1011>
...

• Simple, plus speeding up file ops speeds up dir ops!
24 / 39

Naming magic

• Bootstrapping: Where do you start looking?
I Root directory always inode #2 (0 and 1 historically reserved)

• Special names:
I Root directory: “/”
I Current directory: “.”
I Parent directory: “..”

• Special names not implemented in FS:
I User’s home directory: “∼”
I Globbing: “foo.*” expands to all files starting “foo.”

• Using the given names, only need two operations to navigate the entire name space:
I cd name: move into (change context to) directory name
I ls: enumerate all names in current directory (context)

25 / 39

Unix example: /a/b/c.c

26 / 39

Default context: working directory

• Cumbersome to constantly specify full path names
I In Unix, each process associated with a “current working directory” (cwd)
I File names not beginning with “/” are assumed to be relative to cwd; otherwise translation

happens as before
I Editorial: root, cwd should be regular fds (like stdin, stdout, . . .) with openat syscall instead

of open

• Shells track a default list of active contexts
I A “search path” for programs you run
I Given a search path A : B : C , a shell will check in A, then check in B, then check in C
I Can escape using explicit paths: “./foo”

• Example of locality

27 / 39

Hard and soft links (synonyms)

• More than one dir entry can refer to a given file
I Unix stores count of pointers (“hard

links”) to inode
I To make: “ln foo bar” creates a

synonym (bar) for file foo
inode #31279
refcount = 2

foo bar

• Soft/symbolic links = synonyms for names
I Point to a file (or dir) name, but object can be deleted from underneath it (or never even

exist).
I Unix implements like directories: inode has special

“symlink” bit set and contains name of link target

ln -s /bar baz
"/bar"
refcount = 1baz

I When the file system encounters a symbolic link it automatically translates it (if possible).

28 / 39

Case study: speeding up FS

• Original Unix FS: Simple and elegant:

• Components:
I Data blocks
I Inodes (directories represented as files)
I Hard links
I Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head of free

list)

• Problem: slow
I Only gets 20Kb/sec (2% of disk maximum) even for sequential disk transfers!

29 / 39

A plethora of performance costs

• Blocks too small (512 bytes)
I File index too large
I Too many layers of mapping indirection
I Transfer rate low (get one block at time)

• Poor clustering of related objects:
I Consecutive file blocks not close together
I Inodes far from data blocks
I Inodes for directory not close together
I Poor enumeration performance: e.g., “ls”, “grep foo *.c”

• Usability problems
I 14-character file names a pain
I Can’t atomically update file in crash-proof way

• Next: how FFS fixes these (to a degree) [McKusic]
30 / 39

https://rcs.uwaterloo.ca/~ali/readings/ffs.pdf

Problem: Internal fragmentation

• Block size was too small in Unix FS
• Why not just make block size bigger?

Block size space wasted file bandwidth
512 6.9% 2.6%
1024 11.8% 3.3%
2048 22.4% 6.4%
4096 45.6% 12.0%
1MB 99.0% 97.2%

• Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation”)?
I Use idea from malloc: split unused portion.

31 / 39

Solution: fragments

• BSD FFS:
I Has large block size (4096 or 8192)
I Allow large blocks to be chopped into small ones (“fragments”)
I Used for little files and pieces at the ends of files

• Best way to eliminate internal fragmentation?
I Variable sized splits of course
I Why does FFS use fixed-sized fragments (1024, 2048)?

32 / 39

Clustering related objects in FFS

• Group 1 or more consecutive cylinders into a “cylinder group”

I Key: can access any block in a cylinder without performing a seek. Next fastest place is
adjacent cylinder.

I Tries to put everything related in same cylinder group
I Tries to put everything not related in different group (?!)

33 / 39

Clustering in FFS

• Tries to put sequential blocks in adjacent sectors
I (Access one block, probably access next)

• Tries to keep inode in same cylinder as file data:
I (If you look at inode, most likely will look at data too)

• Tries to keep all inodes in a dir in same cylinder group
I Access one name, frequently access many, e.g., “ls -l” 34 / 39

What does disk layout look like?

• Each cylinder group basically a mini-Unix file system:

superblocks

bookkeeping

cylinder
groups

inodes data blocks

information

• How how to ensure there’s space for related stuff?
I Place different directories in different cylinder groups
I Keep a “free space reserve” so can allocate near existing things
I When file grows too big (1MB) send its remainder to different cylinder group.

35 / 39

Finding space for related objs

• Old Unix (& DOS): Linked list of free blocks
I Just take a block off of the head. Easy.

I Bad: free list gets jumbled over time. Finding adjacent blocks hard and slow

• FFS: switch to bit-map of free blocks
I 1010101111111000001111111000101100
I Easier to find contiguous blocks.
I Small, so usually keep entire thing in memory
I Time to find free block increases if fewer free blocks

36 / 39

Using a bitmap

• Usually keep entire bitmap in memory:
I 4G disk / 4K byte blocks. How big is map?

• Allocate block close to block x?
I Check for blocks near bmap[x/32]
I If disk almost empty, will likely find one near
I As disk becomes full, search becomes more expensive and less effective

• Trade space for time (search time, file access time)
• Keep a reserve (e.g, 10%) of disk always free, ideally scattered across disk

I Don’t tell users (df can get to 110% full)
I Only root can allocate blocks once FS 100% full
I With 10% free, can almost always find one of them free

37 / 39

So what did we gain?

• Performance improvements:
I Able to get 20-40% of disk bandwidth for large files
I 10-20x original Unix file system!
I Better small file performance (why?)

• Is this the best we can do? No.
• Block based rather than extent based

I Could have named contiguous blocks with single pointer and length (Linux ext2fs, XFS)

• Writes of metadata done synchronously
I Really hurts small file performance
I Make asynchronous with write-ordering (“soft updates”) or logging/journaling. . . more next

lecture
I Play with semantics (/tmp file systems)

38 / 39

Other hacks

• Obvious:
I Big file cache

• Fact: no rotation delay if get whole track.
I How to use?

• Fact: transfer cost negligible.
I Recall: Can get 50x the data for only ∼3% more overhead
I 1 sector: 5ms + 4ms + 5µs (≈ 512 B/(100 MB/s)) ≈ 9ms
I 50 sectors: 5ms + 4ms + .25ms = 9.25ms
I How to use?

• Fact: if transfer huge, seek + rotation negligible
I LFS: Hoard data, write out MB at a time

39 / 39

https://rcs.uwaterloo.ca/~ali/readings/lfs.pdf

