CS350: Operating Systems

Ali Mashtizadeh

University of Waterloo

1/31

Operating System

emacs

Operating System

Hardware: CPU, Memory and Devices

2/31

Operating System: Basic Abstractions and APIs

emacs

Process || Threads || Locks || Filel/O

Operating System

Hardware: CPU, Memory and Devices

3/31

Today: Introduce the Process Abstraction

emacs

Process || Threads || Locks || Filel/O

Operating System

Hardware: CPU, Memory and Devices

4/31

Processes

® A process is an instance of a program running

* Examples (can all run simultaneously):
> gcc file_A.c — compiler running on file A
> gcc file_B.c — compiler running on file B
> emacs - text editor
> firefox — web browser

Non-examples (implemented as one process):

> Multiple firefox windows or emacs frames (still one process)

Modern OSes run multiple processes simultaneously

Why processes?
> Simplicity of programming
> Higher throughput (better CPU utilization), lower latency

5/31

® Multiple processes can increase CPU utilization
> Overlap one process's computation with another's wait

-—'I(Wai'r for input) |[——JWait for inputf——mos

gce E—

® Multiple processes can reduce latency
> Running A then B requires 100 sec for B to complete

80 s 20 s
A B
» Running A and B concurrently makes B finish faster
/\ — —
— —)

10s

> A is slower than if it had whole machine to itself,

but still < 100 sec unless both A and B completely CPU-bound
6/31

Concurrency and parallelism

® Parallelism fact of life much longer than OSes have been around

> E.g., say takes 1 worker 10 months to make 1 widget
» Company may hire 100 workers to make 100 widgets
> Latency for first widget >> 1/10 month
>

Throughput may be < 10 widgets per month
(if can't perfectly parallelize task)

> And 100 workers making 10,000 widgets may achieve > 10 widgets/month
¢ Most computers, laptops, and phones are multi-core!
e Computer with 4 cores can run 4 processes in parallel

¢ Result: 4x throughput

7/31

A process'’s view of the world

max
stack
® Each process has own view of machine
> Its own address space l
> lts own open files
> Its own virtual CPU (through preemptive 1
multitasking) heap
® x(char x)0xc000 different in P; & Py "
® Simplifies programming model
text
> gcc does not care that firefox is running ¢

® Sometimes want interaction between processes

> Simplest is through files: emacs edits file, gcc compiles it

> More complicated: Shell/command, Window manager/app.

8/31

Rest of lecture

® User view of processes

> Crash course in basic Unix/Linux system call interface
> How to create, kill, and communicate between processes
P Running example: how to implement a shell

® Kernel view of processes

> Implementing processes in the kernel

9/31

@ User view of processes

@ Kernel view of processes

10/31

Creating processes

* int fork(void);
> Create new process that is exact copy of current one

» Returns process ID of new process in “parent”
> Returns 0 in “child”

° int waitpid(int pid, int xstat, int opt);
> Wait for a child process to terminate
> pid — process to wait for, or -1 for any
> stat — will contain exit value, or signal
> opt — usually 0 or WNOHANG
> Returns process ID or -1 on error

11/31

https://man.freebsd.org/cgi/man.cgi?query=fork
https://man.freebsd.org/cgi/man.cgi?query=waitpid

Deleting processes

* void exit(int status);
> Current process ceases to exist
> status shows up in waitpid (shifted)
> By convention, status of 0 is success, non-zero error

* int kill(int pid, int sig);

> Sends signal sig to process pid

P> SIGTERM most common value, kills process by default
(but application can catch it for “cleanup™)

> SIGKILL stronger, kills process always

12/31

https://man.freebsd.org/cgi/man.cgi?query=exit
https://man.freebsd.org/cgi/man.cgi?query=kill

Running programs

® int execve(char *prog, char x*argv, char *xxenvp);

v

Execute a new program

> prog — full pathname of program to run

> argv — argument vector that gets passed to main
> envp — environment variables, e.g., PATH, HOME

¢ Generally called through a wrapper functions

> int execvp (char *prog, char **xargv);
Search PATH for prog, use current environment

> int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

® Example: minish.c

> Loop that reads a command, then executes it

13/31

https://man.freebsd.org/cgi/man.cgi?query=execve

minish.c (simplified)

Parent Process (PID 5)

1 pid_t pid; char *x*av;
2 void doexec() {

3 execvp(av[0], av);

4 perror(av[0]);

5 exit(1l);

6 }

7

8 /* ... main loop: */

9 for (53) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:

13 perror("fork"); break;
14 case 0:

15 doexec();

16 default:

17 waitpid(pid, NULL, 0); break;
18 }

19 }

14 /31

minish.c (simplified)

Parent Process (PID 5) Child Process (PID 6)
1 pid_t pid; char *xxav; pid_t pid; char xx*av;
2 void doexec() { void doexec() {
3 execvp(av[0], av); execvp(av[0], av);
4 perror(av[0]); perror(av[0]);
5 exit(1l); exit(l);
6 } }
7
8 /* ... main loop: */ /* ... main loop: *x/
9 for (5;) { for (5;) {
10 parse_input(&av, stdin); parse_input(&av, stdin);
11 switch (pid = fork()) { switch (pid = fork()) {
12 case -1: case -1:
13 perror("fork"); break; perror("fork'"); break;
14 case 0: case 0:
15 doexec(); doexec();
16 default: default:
17 waitpid(pid, NULL, 0); break; waitpid(pid, NULL, 0); break;
18 } }
19 } +

14/31

minish.c (simplified)

Parent Process (PID 5) Child Process (PID 6)
1 pid_t pid; char *xxav; pid_t pid; char xx*av;
2 void doexec() { void doexec() {
3 execvp(av[0], av); execvp(av[0], av);
4 perror(av[0]); perror(av[0]);
5 exit(1l); exit(l);
6 } }
7
8 /* ... main loop: */ /* ... main loop: *x/
9 for (5;) { for (5;) {
10 parse_input(&av, stdin); parse_input(&av, stdin);
11 switch (pid = fork()) { switch (pid = fork()) {
12 case -1: case -1:
13 perror("fork"); break; perror("fork'"); break;
14 case 0: case 0: // + After Fork
15 doexec(); doexec();
16 default: // < After Fork (pid=6) default:
17 waitpid(pid, NULL, 0); break; waitpid(pid, NULL, 0); break;
18 } }
19 } +

15/31

minish.c (simplified)

Parent Process (PID 5) Child Process (PID 6)
1 pid_t pid; char *xxav; pid_t pid; char xx*av;
2 void doexec() { void doexec() {
3 execvp(av[0], av); execvp(av([0], av); // «+ After For
4 perror(av[0]); perror(av[0]); // Never executes!
5 exit(1l); exit(l);
6 } }
7
8 /* ... main loop: */ /* ... main loop: *x/
9 for (5;) { for (5;) {
10 parse_input(&av, stdin); parse_input(&av, stdin);
11 switch (pid = fork()) { switch (pid = fork()) {
12 case -1: case -1:
13 perror("fork"); break; perror("fork'"); break;
14 case 0: case 0:
15 doexec(); doexec();
16 default: // < After Fork (pid=6) default:
17 waitpid(pid, NULL, 0); break; waitpid(pid, NULL, 0); break;
18 } }
19 } }

16 /31

minish.c (simplified)

Parent Process (PID 5)

1 pid_t pid; char *x*av;
2 void doexec() {

3 execvp(av[0], av);]

4 perror(av[0]); Child Process (PID 6)

g } exit(1); ® Replaced by the new program
7

8 /* ... main loop: */ int

9 for (;;) { PN

10 pars,e,_'input(&av, stdin); main(int argc, const char *argv[])
11 switch (pid = fork()) {

12 case -1° // < Starts here!

1 "-F kll . k- . ".

13 capseerroo:r(ork'"); break; exit(0);

15 doexec();

16 default: // < After Fork (pid=26)

17 waitpid(pid, NULL, 0); break;

18 }

19 }

17/31

minish.c (simplified)

Parent Process (PID 5)

1 pid_t pid; char *x*av;
2 void doexec() {

3 execvp(av[0], av);

. gigg?g)(?vfol)3 Child Process (PID 6)

? } ® Replaced by the new program

8 /* ... main loop: */

9 for (5;) { int

10 parse_input(&av, stdin); main(int argc, const char xargv[])
11 switch (pid = fork()) { {

12 case -1:

13 perror ("fork'"); break; ce

14 case 0: exit(0); // < Wake up waitpid
15 doexec(); }

16 default:

17 waitpid(pid, NULL, 0); break;

18 // < waitpid returns

19 }

20 } 18/31

Manipulating file descriptors

® int dup2(int oldfd, int newfd);
> Closes newfd, if it was a valid descriptor
> Makes newfd an exact copy of oldfd
> Two file descriptors will share same offset
(lseek on one will affect both)
¢ Example: redirsh.c

> Loop that reads a command and executes it
> Recognizes command < 1dinput > output 2> errlog

19/31

https://man.freebsd.org/cgi/man.cgi?query=dup2

redirsh.c

1 void doexec (void) {

2 1int fd;

3 if (infile) { /* non-NULL for "command < infile" x/
4 if ((fd = open(infile, O_RDONLY)) < 0) {

5 perror(infile);

6 exit(1l);

7 by

8 if (fd = 0) {

9 dup2(fd, 0);

10 close(fd);

11 }

12 }

13

14 /* ... do same for outfile—fd 1, errfile—fd 2 ... %/

15 execvp (av[0], av);
16 perror (av[0]);
17 exit (1);

20/31

° int pipe(int fds[2]);
> Returns two file descriptors in Tds[0] and fds[1]
» Writes to fds[1] will be read on fds[0]
> When last copy of fds[1] closed, fds[0] will return EOF

» Returns 0 on success, -1 on error

e Qperations on pipes
> read/write/close — as with files
> When fds[1] closed, read (fds[0]) returns O bytes
» When fds[0] closed, write(fds[1]):
> Kills process with SIGPIPE
> Or if signal ignored, fails with EPIPE

¢ Example: pipesh.c

> Sets up pipeline commandl | command2 | command3
21/31

https://man.freebsd.org/cgi/man.cgi?query=pipe

pipesh.c (simplified)

1 void doexec (void) {

2 while (outcmd) {

3 int pipefds[2]; pipe(pipefds);

4 switch (fork()) {

5 case -1:

6 perror ("fork"); exit(1l);

7 case 0:

8 dup2 (pipefds[1], 1);

9 close(pipefds[0]); close(pipefds[1]);
10 outcmd = NULL;

11 break;

12 default:

13 dup2 (pipefds[0], 0);

14 close(pipefds[0]); close(pipefds[1l]);
15 parse_input(&av, &outcmd, outcmd);

16 break;

17 }

22/31

Why fork?

Most calls to fork followed by execve

Could also combine into one spawn system call

Occasionally useful to fork one process

> Pre-forked Webservers for parallelism

> Creates one process per core to serve clients
> Lots of uses: Nginx, PostgreSQL, etc.

Real win is simplicity of interface

» Tons of things you might want to do to child:
Manipulate file descriptors, environment, resource limits, etc.

> Yet fork requires no arguments at all

23/31

Spawning process w/o fork

* Without fork, require tons of different options

® Example: Windows CreateProcess system call

> Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, ...

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR 1pApplicationName,
_Inout_opt_ LPTSTR 1lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES 1lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES 1pThreadAttributes,

In BOOL bInheritHandles,

In DWORD dwCreationFlags,
_In_opt_ LPVOID 1lpEnvironment,
_In_opt_ LPCTSTR 1pCurrentDirectory,
In LPSTARTUPINFO 1pStartupInfo,

Out LPPROCESS_INFORMATION 1lpProcessInformation
)5

24/31

http://msdn.microsoft.com/en-us/library/ms682425(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682429(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682431(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682434(v=VS.85).aspx

@ User view of processes

@ Kernel view of processes

25/31

Implementing processes

[]
OS keeps data structure for each proc Process state
> Process Control Block (PCB
f A r _ (PCB) o Process ID
> Called proc in Unix, task_struct in Linux, and struct :
Process in COS User id, etc.
® Tracks state of the process Program counter
» Running, ready (runnable), blocked, etc. .
& v () Registers
¢ Includes information necessary to run
> Registers, virtual memory mappings, etc. Address space
> Open files (including memory mapped files) (VM data structs)
® Various other data about the process]
. . _ _ Open files
> Credentials (user/group ID), signal mask, controlling terminal,
priority, accounting statistics, whether being debugged, which
system call binary emulation in use, ... PCB

26/31

Process states

admitted interrupt exit

scheduler dispatch

® Process can be in one of several states

1/0 or event completion 1/0 or event wait

> new & terminated at beginning & end of life

> running — currently executing (or will execute on kernel return)

> ready — can run, but kernel has chosen different process to run

> waiting — needs async event (e.g., disk operation) to proceed
® Which process should kernel run?

> if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it

P if >1 runnable, must make scheduling decision .

Scheduling

How to pick which process to run

® Scan process table for first runnable?

> Expensive. Weird priorities (small pids do better)

> Divide into runnable and blocked processes

FIFO/Round-Robin?

> Put threads on back of list, pull them from front
— Bl

(COS sys/kern/sched.c)

Priority?
> Give some threads a better shot at the CPU

28/31

e Can preempt a process when kernel gets control

Running process can vector control to kernel

> System call, page fault, illegal instruction, etc.

> May put current process to sleep—e.g., read from disk

> May make other process runnable—e.g., fork, write to pipe

Periodic timer interrupt
P If running process used up quantum, schedule another
¢ Device interrupt

> Disk request completed, or packet arrived on network
> Previously waiting process becomes runnable
> Schedule if higher priority than current running proc.

Changing running process is called a context switch

29/31

process P,

ridle

executing I

Context switch

operating system

interrupt or system call

executing ﬂ
T7H save state into PCB,

reload state from PCB, :

interrupt or system call

X
save state into PCB,

reload state from PCB,

process P,

idle

executing

idle

30/31

Context switch details

® Very machine dependent. Typical things include:

> Save program counter and integer registers (always)
> Save floating point or other special registers

> Save condition codes

> Change virtual address translations

® Non-negligible cost
> Save/restore floating point registers expensive

> Optimization: only save if process used floating point

> May require flushing TLB (memory translation hardware)
> HW Optimization 1: don’t flush kernel’s own data from TLB
> HW Optimization 2: use tag to avoid flushing any data

> Usually causes more cache misses (switch working sets)

31/31

	User view of processes
	Kernel view of processes

