
CS350: Operating Systems

Lecture 6: System Calls and Interrupts

Ali Mashtizadeh

University of Waterloo

1 / 55

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

2 / 55

System Software StackSystem Call So�ware Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5

5 / 43

3 / 55

System Call Interface

System Calls: Application programmer interface (API) that programmers use to interact with
the operating system.

• Processes invoke system calls
• Examples: fork(), waitpid(), open(), close(), ...
• System call interface can have complex calls

I sysctl() Exposes operating system configuration
I ioctl() Controlling devices

• Need a mechanism to safely enter and exit the kernel
I Applications don’t call kernel functions directly!
I Remember: kernels provide protection

4 / 55

https://man.freebsd.org/cgi/man.cgi?query=fork
https://man.freebsd.org/cgi/man.cgi?query=waitpid
https://man.freebsd.org/cgi/man.cgi?query=open
https://man.freebsd.org/cgi/man.cgi?query=close
https://man.freebsd.org/cgi/man.cgi?query=sysctl
https://man.freebsd.org/cgi/man.cgi?query=ioctl

Privilege Modes

• Hardware provides multiple protection modes
• At least two modes:

I Kernel Mode or Privledged Mode – Operating System
I User Mode – Applications

• Kernel Mode can access privileged CPU features
I Access all restricted CPU features
I Enable/disable interrupts, setup interrupt handlers
I Control system call interface
I Modify the TLB (virtual memory ... future lecture)

• Allows kernel to protect itself and isolate processes
I Processes cannot read/write kernel memory
I Processes cannot directly call kernel functions

5 / 55

Mode Transitions

• Kernel Mode can only be entered through well defined entry
points

• Two classes of entry points provided by the processor:
• Interrupts

I Interrupts are generated by devices to signal needing attention
I E.g. Keyboard input is ready
I More on this during our IO lecture!

• Exceptions:
I Exceptions are caused by processor
I E.g. Divide by zero, page faults, internal CPU errors

• Interrupts and exceptions cause hardware to transfer control
to the interrupt/exception handler, a fixed entry point in the
kernel.

6 / 55

Interrupts

• Interrupt are raised by devices
• Interrupt handler is a function in the kernel that services a device request
• Interrupt Process:

I Device signals the processor through a physical pin or bus message
I Processor interrupts the current program
I Processor begins executing the interrupt handler in privileged mode

• Most interrupts can be disabled, but not all
I Non-maskable interrupts (NMI) is for urgent system requests

7 / 55

Exceptions

• Exceptions (or faults) are conditions encountered during execution of a program
I Exceptions are due to multiple reasons:
I Program Errors: Divide-by-zero, Illegal instructions
I Operating System Requests: Page faults
I Hardware Errors: System check (bad memory or internal CPU failures)

• CPU handles exceptions similar to interrupts
I Processor stops at the instruction that triggered the exception (usually)
I Control is transferred to a fixed location where the exception handler is located in privledged

mode

• System calls are a class of exceptions!

8 / 55

x86-64 Exception Vectors

• Interrupts, exceptions and system calls use the same mechanism
• x86–64 offers a high performance path for system calls (not used in COS)
#define T_DE 0 /* Divide Error Exception */
#define T_DB 1 /* Debug Exception */
#define T_NMI 2 /* NMI Interrupt */
#define T_BP 3 /* Breakpoint Exception */
#define T_OF 4 /* Overflow Exception */
#define T_BR 5 /* BOUND Range Exceeded Exception */
#define T_UD 6 /* Invalid Opcode Exception */
#define T_NM 7 /* Device Not Available Exception */
#define T_DF 8 /* Double Fault Exception */
#define T_TS 10 /* Invalid TSS Exception */
#define T_NP 11 /* Segment Not Present */
#define T_SS 12 /* Stack Fault Exception */
#define T_GP 13 /* General Protection Exception */
#define T_PF 14 /* Page-Fault Exception */
#define T_MF 16 /* x87 FPU Floating-Point Error */
#define T_AC 17 /* Alignment Check Exception */
#define T_MC 18 /* Machine-Check Exception */
... 9 / 55

System Calls

• System calls are performed by triggering the T_SYS exception:

1. Application loads the arguments into CPU registers

2. Load the system call number into register rdi (first arg)

3. Executes int 60 instruction to trigger T_SYS exception

4. Processor looks up the interrupt vector

5. Processor jumps to the kernel exception handler

6. Returns to userspace using iret, return from exception instruction

10 / 55

Hardware Interrupt Handling in x86–64

• Interrupt descriptor table: defines the entry point for interrupt vector.
• Configuring the IDT:

1. OS initializes IDT with entry point of interrupt vectors (1-255)

Chapter 4: Segmented Virtual Memory 115

24593—Rev. 3.10—February 2005 AMD64 Technology

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate
descriptor must be a 64-bit code segment (CS.L=1, CS.D=0). If
the target is not a 64-bit code segment, a general-protection
exception, #GP(error), occurs. The error code reported depends
on the gate type:

� Call gates report the target code-segment selector as the
error code.

� Interrupt and trap gates report the interrupt-vector number
as the error code.

A general-protection exception, #GP(0), occurs if software
attempts to reference a long-mode gate descriptor with a target-
segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate
descriptors in the same descriptor table. Figure 4-23 shows that
bits 12–8 of byte +12 in a long-mode call gate must be cleared to
0. These bits correspond to the S and Type fields in a legacy call
gate. Clearing these bits to 0 corresponds to an illegal type in
legacy mode and causes a #GP if an attempt is made to access
the upper half of a 64-bit mode call-gate descriptor as a legacy
call-gate descriptor.

It is not necessary to clear these same bits in a long-mode
interrupt gate or trap gate. In long mode, the interrupt-
descriptor table (IDT) must contain 64-bit interrupt gates or

16 15 14 13 12 11 8 7 3 2 0

Reserved, IGN +12

Target Offset 63–32 +8

Target Offset 31–16 P DPL S Type Reserved, IGN IST +4

Target Selector Target Offset 15–0 +0

11 / 55

Interrupt Gate Descriptor (x86–64)

Chapter 4: Segmented Virtual Memory 115

24593—Rev. 3.10—February 2005 AMD64 Technology

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate
descriptor must be a 64-bit code segment (CS.L=1, CS.D=0). If
the target is not a 64-bit code segment, a general-protection
exception, #GP(error), occurs. The error code reported depends
on the gate type:

� Call gates report the target code-segment selector as the
error code.

� Interrupt and trap gates report the interrupt-vector number
as the error code.

A general-protection exception, #GP(0), occurs if software
attempts to reference a long-mode gate descriptor with a target-
segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate
descriptors in the same descriptor table. Figure 4-23 shows that
bits 12–8 of byte +12 in a long-mode call gate must be cleared to
0. These bits correspond to the S and Type fields in a legacy call
gate. Clearing these bits to 0 corresponds to an illegal type in
legacy mode and causes a #GP if an attempt is made to access
the upper half of a 64-bit mode call-gate descriptor as a legacy
call-gate descriptor.

It is not necessary to clear these same bits in a long-mode
interrupt gate or trap gate. In long mode, the interrupt-
descriptor table (IDT) must contain 64-bit interrupt gates or

16 15 14 13 12 11 8 7 3 2 0

Reserved, IGN +12

Target Offset 63–32 +8

Target Offset 31–16 P DPL S Type Reserved, IGN IST +4

Target Selector Target Offset 15–0 +0

• Target Offset: First instruction of the interrupt handler
• Target Selector: Code segment – sets priviledge level (user/kernel mode)

I More on this later
• P: Present (i.e. valid)
• DPL: Minimum priviedge level that can trigger it

I Prevents user programs from triggering device interrupts
• Type: Constant for 64-bit IDT entry
• IST: Kernel stack to use

12 / 55

Configuring Interrupt Handling (x86–64)

1. OS initializes IDT with entry point of interrupt vectors (1-255)
2. OS initializes the IDT descriptor containing address and length of IDT
3. OS uses lidt instruction to load the IDTR

Chapter 4: Segmented Virtual Memory 97

24593—Rev. 3.10—February 2005 AMD64 Technology

Figure 4-12. Indexing an IDT

4.6.6 Interrupt
Descriptor-Table
Register

The interrupt descriptor-table register (IDTR) points to the IDT
in memory and defines its size. This register is loaded from
memory using the LIDT instruction (see “LGDT and LIDT
Instructions” on page 189). The format of the IDTR is identical
to that of the GDTR in all modes. Figure 4-7 on page 91 shows
the format of the IDTR in legacy mode. Figure 4-8 on page 92
shows the format of the IDTR in long mode.

The offsets into the descriptor tables are not extended by the
AMD64 architecture in support of long mode. Therefore, the
IDTR limit-field size is unchanged from the legacy size. The
processor does check the IDT limit in long mode during IDT
accesses.

4.7 Legacy Segment Descriptors

4.7.1 Descriptor
Format

Segment descriptors define, protect, and isolate segments from
each other. There are two basic types of descriptors, each of
which are used to describe different segment (or gate) types:

� User Segments—These include code segments and data
segments. Stack segments are a type of data segment.

� System Segments—System segments consist of LDT
segments and task-state segments (TSS). Gate descriptors

513-207.eps

IDT Base Address IDT Limit

Interrupt
Descriptor Table

*

Interrupt Vector

Descriptor Entry
Size

+

+

Interrupt Descriptor Table Register

13 / 55

Hardware Interrupt Handling Process (x86–64)

1. Finds the IDT through the IDTR register
2. Read the IDT descriptor entry
3. Look up the kernel stack in the TSS (Task State Segment)
4. IST field specifies which stack to use
5. CPU pushes the interrupt stack frame

Chapter 8: Exceptions and Interrupts 291

24593—Rev. 3.10—February 2005 AMD64 Technology

Figure 8-13 shows the stack after control is transferred to the
interrupt handler.

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. In legacy mode, the interrupt-stack
pointer can be aligned at any address boundary. Long mode,
however, aligns the stack on a 16-byte boundary. This alignment
is performed by the processor in hardware before pushing items
onto the s tack frame. The previous RSP is saved
unconditionally on the new stack by the interrupt mechanism.
A subsequent IRET instruction automatically restores the
previous RSP.

Aligning the stack on a 16-byte boundary allows optimal
performance for saving and restoring the 16-byte XMM
registers. The interrupt handler can save and restore the XMM
registers using the faster 16-byte aligned loads and stores
(MOVAPS), rather than unaligned loads and stores (MOVUPS).
Although the RSP alignment is always performed in long mode,
it is only of consequence when the interrupted program is
already running at CPL=0, and it is generally used only within
the operating-system kernel. The operating system should put
16-byte aligned RSP values in the TSS for interrupts that
change privilege levels.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

+40

Return SS

Return CS

With No Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

Interrupt-Handler Stack

14 / 55

Hardware Interrupt Handling Process (x86–64)

1. Finds the IDT through the IDTR register

2. Read the IDT descriptor entry

3. Look up the kernel stack in the TSS (Task State
Segment)

4. IST field specifies which stack to use

5. CPU pushes the interrupt stack frame

6. Kernel pushes the trap frame

7. Kernel sets up CPU to known state to run C code

372 Chapter 12: Task Management

AMD64 Technology 24593—Rev. 3.10—February 2005

Figure 12-8. Long Mode TSS Format

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes) IOPB
Base

��
�

��
�

I/O Map Base Address Reserved, IGN +64h

Reserved, IGN
+60h

+5Ch

IST7[63:32] +58h

IST7[31:0] +54h

IST6[63:32] +50h

IST6[31:0] +4Ch

IST5[63:32] +48h

IST5[31:0] +44h

IST4[63:32] +40h

IST4[31:0] +3Ch

IST3[63:32] +38h

IST3[31:0] +34h

IST2[63:32] +30h

IST2[31:0] +2Ch

IST1[63:32] +28h

IST1[31:0] +24h

Reserved, IGN
+20h

+1Ch

RSP2[63:32] +18h

RSP2[31:0] +14h

RSP1[63:32] +10h

RSP1[31:0] +0Ch

RSP0[63:32] +08h

RSP0[31:0] +04h

Reserved, IGN +00h

15 / 55

OS Handler Details

• Interupt Vectors defined in trap_table
• IDT created and IDTR loaded in Trap_Init
• Each interrupt vector has a custom assembly entry point
• TRAP_NOEC and TRAP_EC macro for each

I Pushes the start of the trap frame including vector number
I Most exceptions in x86 push an extra error code on the stack
I NOEC version pushes an extra 0 to make the stack layout identical

• trap_common pushes the CPU registers
• trap_entry is the C handler that dispatches interrupts

16 / 55

https://cs350.rcs.uwaterloo.ca/opengrok/search?defs=trap_table
https://cs350.rcs.uwaterloo.ca/opengrok/search?defs=Trap_Init
https://cs350.rcs.uwaterloo.ca/opengrok/search?defs=TRAP_NOEC
https://cs350.rcs.uwaterloo.ca/opengrok/search?defs=TRAP_EC
https://cs350.rcs.uwaterloo.ca/opengrok/search?defs=trap_common
https://cs350.rcs.uwaterloo.ca/opengrok/search?defs=trap_entry

System Call Operation Details

• Application calls into the C library (e.g., calls write())
• Library executes the syscall instruction
• Kernel exception handler runs

I Switch to kernel stack
I Create a trapframe which contains the program state
I Determine the type of exception
I Determine the type of system call
I Run the function in the kernel (e.g., sys_write())
I Restore application state from the trap frame
I Return from exception (iret instruction)

• Library wrapper function returns to the application

17 / 55

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

18 / 55

How are values passed?

Application Binary Interface (ABI) defines the contract between functions an application and
system calls.

• Operating Systems and Compilers must obey these rules referred to as the calling
convention

• Defines
I Meaning of registers during function calls and system calls
I Who’s responsible to save registers
I Describes stack alignment rules

19 / 55

System Call Numbering

• System calls numbers defined in kern/include/syscall.h
• Syscall number is passed as the first argument into syscall

#define SYSCALL_NULL 0x00
#define SYSCALL_TIME 0x01
#define SYSCALL_GETPID 0x02
#define SYSCALL_EXIT 0x03
#define SYSCALL_SPAWN 0x04
#define SYSCALL_WAIT 0x05

// Memory
#define SYSCALL_MMAP 0x08
#define SYSCALL_MUNMAP 0x09
#define SYSCALL_MPROTECT 0x0A
...

20 / 55

x86–64 Calling Conventions

• Caller-saved registers are saved before calling another function
I r10, r11: Scratch registers
I rdi, rsi, rdx, rcx, r8, r9: Argument registers
I rax, rdx: Return values

• Callee-saved registers are saved inside the function
I rbx, r12–r15: Saved registers

• Stack registers
I rsp: Stack pointer
I rbp: Frame pointer (assuming -fno-omit-framepointer)

• Instructions:
I call: Call function and save return address on stack
I ret: Return from function

21 / 55

Functions in x86–64

• Functions are called with the call instruction
• call pushes the return address to the stack and jumps to the target

foo:
push %rbp # Save the frame pointer
mov %rsp, %rbp # Set the frame pointer to TOS

Save caller-save registers (if needed)

call bar # Call bar

Restore registers (if needed)

pop %rbp
ret # Return

22 / 55

Functions in x86–64 Continued

• Simple functions may not need to save any registers
• We save callee-saved registers if needed for performance

int bar(int a) {
return 41 + a;

}

bar:
mov %edi, %eax # Move 1st arg to eax (lower 32-bits of rax)
add $41, %eax # Add 41 to eax
ret

23 / 55

Where are registers saved?

• Registers are saved in memory in the per-thread stack
• A stack frame is all the saved registers and local variables

that must be saved within a single function
• Our stack is made up of an array of stack frames

Push stack element
push %rax
Equivalent to:
mov %rax, -8(%rsp) # Store into the top of stack
sub $8, %rsp

Pop stack element
pop %rax
Equivalent to:
mov 0(%rsp), %rax # Load from the top of stack
add $8, %rsp

24 / 55

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

25 / 55

Execution Contexts

Execution Context: The environment where functions execute including their arguments, local
variables, memory.

• Context is a unique set of CPU registers and a stack pointer

• Multiple execution contexts:
I Application Context: Application threads
I Kernel Context: Kernel threads, software interrupts, etc
I Interrupt Context: Interrupt handler

• Kernel and Interrupts usually the same context

• Context transitions:
I Context switch: a transitions between contexts
I Thread Switch: a transition between threads (usually between kernel contexts)

26 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame

User Stack
27 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame

User Stack
28 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame
printf() frame

User Stack
29 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame
printf() frame
write() frame

User Stack
30 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame
printf() frame
write() frame

???

User Stack
31 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• int $60 instruction triggers the exception handler (vector 60)

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

Kernel Stack
32 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• trap_common saves trapframe on the kernel stack!

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()

Kernel Stack
33 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• Calls trap_entry() to decode trap and Syscall_Entry()

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()
Syscall_Entry()

Kernel Stack
34 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• Syscall_Entry() decodes arguments and calls Syscall_Write()

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()
Syscall_Entry()
Syscall_Write()

Kernel Stack
35 / 55

Context Switch: Returning to User Mode
• trapframe: Saves the application context
• Syscall_Write() writes text to console

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()
Syscall_Entry()
Syscall_Write()

console
driver

Kernel Stack
36 / 55

Context Switch: Returning to User Mode
• trapframe: Saves the application context
• Return from Syscall_Write()

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()
Syscall_Entry()
Syscall_Write()

Kernel Stack
37 / 55

Context Switch: Returning to User Mode
• Syscall_Entry() stores return value and error in trapframe
• rax: return value/error code

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()
Syscall_Entry()

Kernel Stack
38 / 55

Context Switch: Returning to User Mode
• trap_common() returns to the instruction following int $60
• rax: return value/error code

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

trap_entry()

Kernel Stack
39 / 55

Context Switch: Returning to User Mode
• trap_common restores the application context
• Restores all CPU state from the trapframe

_start frame
main() frame
printf() frame
write() frame

User Stack

trap_common
trapframe

Kernel Stack
40 / 55

Context Switch: Returning to User Mode
• write() decodes rax and updates errno
• errno is where error codes are stored in POSIX

_start frame
main() frame
printf() frame
write() frame

User Stack Kernel Stack
41 / 55

Context Switch: Returning to User Mode
• errno is where error codes are stored in POSIX
• printf() gets return value, if -1 then sets errno

_start frame
main() frame
printf() frame

User Stack Kernel Stack
42 / 55

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

43 / 55

Scheduling

• How to pick which process to run
• Scan process table for first runnable?

I Expensive. Weird priorities (small pids do better)
I Divide into runnable and blocked processes

• FIFO/Round-Robin?
I Put threads on back of list, pull them from front

(see kern/sched.c)

• Priority?
I Give some threads a better shot at the CPU

44 / 55

Preemption

• Can preempt a process when kernel gets control
• Running process can vector control to kernel

I System call, page fault, illegal instruction, etc.
I May put current process to sleep—e.g., read from disk
I May make other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt
I If running process used up quantum, schedule another

• Device interrupt
I Disk request completed, or packet arrived on network
I Previously waiting process becomes runnable
I Schedule if higher priority than current running proc.

• Changing running process is called a context switch
45 / 55

Context switch

46 / 55

Context switch details

• Very machine dependent. Typical things include:
I Save program counter and integer registers (always)
I Save floating point or other special registers
I Save condition codes
I Change virtual address translations

• Non-negligible cost
I Save/restore floating point registers expensive

. Optimization: only save if process used floating point
I May require flushing TLB (memory translation hardware)

. HW Optimization 1: don’t flush kernel’s own data from TLB

. HW Optimization 2: use tag to avoid flushing any data
I Usually causes more cache misses (switch working sets)

47 / 55

Switching Processes: Timer Interrupt
• Starts with a timer interrupt or sleeping in a system call
• Interrupts user process in the middle of the execution

_start frame
main() frame

User Stack

trap_common
trapframe

Kernel Stack 1
48 / 55

Switching Processes: Timer Interrupt
• trap_common saves the trapframe
• Trap_Entry() notices a T_IRQ_TIMER from the Timer

_start frame
main() frame

User Stack

trap_common
trapframe

Trap_Entry()

Kernel Stack 1
49 / 55

Switching Processes: Timer Interrupt
• Calls KTimer_Process to process any scheduled timer events

_start frame
main() frame

User Stack

trap_common
trapframe

Trap_Entry()
KTimer_Process

Kernel Stack 1
50 / 55

Switching Processes: Timer Interrupt
• Calls Sched_Scheduler to switch to a new process

_start frame
main() frame

User Stack

trap_common
trapframe

Trap_Entry()
Sched_Scheduler

Kernel Stack 1
51 / 55

Switching Processes: Timer Interrupt
• Timers trigger processing events in the OS and the CPU scheduler

_start frame
main() frame

User Stack

trap_common
trapframe

Trap_Entry()
Sched_Scheduler

Kernel Stack 1
52 / 55

Switching Processes: CPU Scheduler
• Sched_Scheduler() calls into scheduler to pick next thread
• Calls Sched_Switch() to switch threads

_start frame
main() frame

User Stack

trap_common
trapframe

Trap_Entry()
Sched_Scheduler
Sched_Switch

Sched_SwitchArch

Kernel Stack 1
53 / 55

Switching Processes: Thread Switch
• switchstack: saves and restores kernel thread state
• Switching processes is a switch between kernel threads!

_start frame
main() frame

User Stack

trap_common
trapframe

Trap_Entry()
Sched_Scheduler
Sched_Switch

Thread_SwitchArch
switchstack

switchframe

Kernel Stack 1
54 / 55

Switching Processes: Thread Switch
• switchstack saves thread state onto the stack
• switchframe: contains the kernel context!

trap_common
trapframe

Trap_Entry()
Sched_Scheduler
Sched_Switch

Thread_SwitchArch
switchstack

switchframe

Kernel Stack 1

trap_common
trapframe

Trap_Entry()
Sched_Scheduler
Sched_Switch

Thread_SwitchArch
switchstack

switchframe

Kernel Stack 2
55 / 55

	Kernel API
	Calling Conventions
	System Calls
	Switching Threads/Processes

