
CS350: Operating Systems

Lecture 3: Threads

Ali Mashtizadeh

University of Waterloo

1 / 26

Today: Threads

Operating System

Hardware: CPU, Memory and Devices

emacs

Process Threads Locks File I/O

2 / 26

Outline

1 Threads

2 Case Study: Go Language and Runtime

3 How to implement threads in COS

3 / 26

Threads

• A thread is a schedulable execution context
I Program counter, registers, stack (local variables) . . .

• Multi-threaded programs share the address space (global variables, heap, . . .)
4 / 26

Why threads?

• Most popular abstraction for concurrency
I Lighter-weight abstraction than processes
I All threads in one process share memory, file descriptors, etc.

• Allows one process to use multiple CPUs or cores
• Allows program to overlap I/O and computation

I Same benefit as OS running emacs & gcc simultaneously
I E.g., threaded web server services clients simultaneously:

for (;;) {
fd = accept_client ();
thread_create (service_client, &fd);

}

• Most kernels have threads, too
I Typically at least one kernel thread for every process

5 / 26

POSIX thread API

• int pthread_create(pthread_t *thr, pthread_attr_t *attr,
void *(*fn)(void *), void *arg);

I Create a new thread identified by thr with optional attributes, run fn with arg

• void pthread_exit(void *return_value);
I Destroy current thread and return a pointer

• int pthread_join(pthread_t thread, void **return_value);
I Wait for thread thread to exit and receive the return value

• void pthread_yield();
I Tell the OS scheduler to run another thread or process

• Plus lots of support for synchronization (next Lecture and see [Birell])

6 / 26

https://man.freebsd.org/cgi/man.cgi?query=pthread_create
https://man.freebsd.org/cgi/man.cgi?query=pthread_exit
https://man.freebsd.org/cgi/man.cgi?query=pthread_join
https://man.freebsd.org/cgi/man.cgi?query=pthread_yield
https://rcs.uwaterloo.ca/~ali/readings/birrell.pdf

Kernel threads

• Can implement pthread_create as a system call
• To add pthread_create to an OS:

I Start with process abstraction in kernel
I pthread_create like process creation with features stripped out

. Keep same address space, file table, etc., in new process

. rfork/clone syscalls actually allow individual control

• Faster than a process, but still very heavy weight
7 / 26

https://man.freebsd.org/cgi/man.cgi?query=rfork

Limitations of kernel-level threads

• Every thread operation must go through kernel
I create, exit, join, synchronize, or switch for any reason
I Syscall takes 100 cycles, function call 2 cycles
I Result: threads 10×–30× slower when implemented in kernel
I Worse today because of SPECTRE/Meltdown mitigations

• One-size fits all thread implementation
I Kernel threads must please all people
I Maybe pay for fancy features (priority, etc.) you don’t need

• General heavy-weight memory requirements
I E.g., requires a fixed-size stack within kernel
I Other data structures designed for heavier-weight processes

8 / 26

https://rcs.uwaterloo.ca/~ali/readings/spectre.pdf
https://rcs.uwaterloo.ca/~ali/readings/meltdown.pdf

User threads

• An alternative: implement in user-level library
I One kernel thread per process
I pthread_create, pthread_exit, etc., just library functions

9 / 26

Implementing user-level threads

• Allocate a new stack for each pthread_create

• Keep a queue of runnable threads
• Replace blocking system calls (read/write/etc.)

I If operation would block, switch and run different thread

• Schedule periodic timer signal (setitimer)
I Switch to another thread on timer signals (preemption)

• Multi-threaded web server example
I Thread calls read to get data from remote web browser
I “Fake” read function makes read syscall in non-blocking mode
I No data? schedule another thread
I On timer or when idle check which connections have new data

10 / 26

https://man.freebsd.org/cgi/man.cgi?query=pthread_create
https://man.freebsd.org/cgi/man.cgi?query=setitimer

Limitations of user-level threads

• Can’t take advantage of multiple CPUs or cores
• A blocking system call blocks all threads

I Can replace read to handle network connections
I But usually OSes don’t let you do this for disk
I So one uncached disk read blocks all threads

• A page fault blocks all threads
• Possible deadlock if one thread blocks on another

I May block entire process and make no progress
I [More on deadlock in future lectures.]

11 / 26

User threads on kernel threads

• User threads implemented on kernel threads
I Multiple kernel-level threads per process
I thread_create, thread_exit still library functions as before

• Sometimes called n : m threading
I Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)
12 / 26

Limitations of n : m threading

• Many of same problems as n : 1 threads
I Blocked threads, deadlock, . . .

• Hard to keep same # ktrheads as available CPUs
I Kernel knows how many CPUs available
I Kernel knows which kernel-level threads are blocked
I Tries to hide these things from applications for transparency
I User-level thread scheduler might think a thread is running

while underlying kernel thread is blocked

• Kernel doesn’t know relative importance of threads
I Might preempt kthread in which library holds important lock

13 / 26

Lessons

• Threads best implemented as a library
I But kernel threads not best interface on which to do this

• Better kernel interfaces have been suggested
I See Scheduler Activations [Anderson et al.]
I Maybe too complex to implement on existing OSes (some have added then removed such

features, now Windows is trying it)
• Today shouldn’t dissuade you from using threads

I Standard user or kernel threads are fine for most purposes
I Use kernel threads if I/O concurrency main goal
I Use n : m threads for highly concurrent (e.g,. scientific applications) with many thread

switches
• . . . though concurrency/synchronization lectures may

I Concurrency greatly increases the complexity of a program!
I Leads to all kinds of nasty race conditions

14 / 26

http://www.cs.washington.edu/homes/tom/pubs/sched_act.pdf

Outline

1 Threads

2 Case Study: Go Language and Runtime

3 How to implement threads in COS

15 / 26

Go Routines

• Go routines are very light-weight
I Running 100k go routines is practical
I Custom compiler enables stack segmentation, preemption, and garbage collection
I Runs on segmented stack – stack allocated on demand to avoid memory use
I OS thread typically allocate 2 MiB fixed stacks

• Go routines on top of Kernel threads (n:m Model)
I Multi-core scalability and efficient user-level threads
I One pthread (kernel-level thread) per CPU core
I Supports many user-level threads as you like

16 / 26

Go Routine Continued

• Each kernel-level thread finds and runs a go routine (user-level thread)

• Every logical core is owned by a kernel thread when running

• Convert blocking system calls (when possible):
I Converted to non-blocking by in the runtime yielding the CPU to another core
I Cores poll using kernel event API poll, epoll, or kqueue

• Blocking system calls:
I Release the "CPU" to another kernel-level thread before the call
I Let the kernel thread sleep
I Regain the "CPU" thread when done

17 / 26

https://man.freebsd.org/cgi/man.cgi?query=poll
https://man.freebsd.org/cgi/man.cgi?query=kqueue

Go Channels

• Go routine communicate and synchronize through channels

func worker(done chan bool) {
// Notify the main routine
done <- true

}

func main() {
// Create a channel to notify us
done := make(chan bool, 1)

// Create go routine
go worker(done)

// Block until we receive a message
<-done

}

18 / 26

Outline

1 Threads

2 Case Study: Go Language and Runtime

3 How to implement threads in COS

19 / 26

Background: AMD64/x86-64 calling conventions

• Registers divided into 2 groups
I Functions free to clobber caller-saved regs

(%r10, %r11, arguments and return registers)
I But must restore callee-saved ones to original value upon

return (%rbx, %r12–%r15)

• %rsp register always base of stack
I Frame pointer (or base pointer) (%rbp) is old %rsp

• Local variables stored in registers and on stack
• Function arguments go in caller-saved regs and on stack

I First six arguments in %rdi, %rsi, %rdx, %rcx, %r8,
%r9

I Remaining arguments on stack

• Return value %rax and %rdx

fp

and temps
Local vars

registers
callee-saved

old frame ptr

arguments
Call

sp

return addr

20 / 26

Background: procedure calls

• Some state saved on stack
I Return address, caller-saved registers

• Some state not saved
I Callee-saved regs, global variables, stack pointer

21 / 26

Threads vs. procedures

• Threads may resume out of order:
I Cannot use LIFO stack to save state
I General solution: one stack per thread

• Threads switch less often:
I Don’t partition registers (why?)

• Threads can be involuntarily interrupted:
I Synchronous: procedure call can use compiler to save state
I Asynchronous: thread switch code saves all registers

• More than one than one thread can run at a time:
I Procedure call scheduling obvious: Run called procedure
I Thread scheduling: What to run next and on which CPU?

22 / 26

COS: Thread Details

• Supports both kernel and user threads
• Basic Pthreads support see lib/libc/posix/pthread.c

/* Create a kernel thread associated with the process */
Thread *Thread_KThreadCreate(void (*f)(void *), void *arg);

/* Create a userspace thread (and associated kernel thread */
Thread *Thread_UThreadCreate(Thread *oldThr,

uint64_t rip,
uint64_t arg);

23 / 26

COS: Switching Threads

• All thread switches go through Sched_Scheduler() and Sched_Switch()
• Sched_switch() calls Thread_SwitchArch that runs switchstack
• switchstack switches from one stack to other while saving and restoring registers

General (from Kernel) Hardware Interrupt (typically Timer)

...

Sched_Scheduler()

Sched_Switch()

Thread_SwitchArch()

switchstack()

switchframe

...

...

struct Trapframe

trap_entry()

interrupt handler ...

Thread_SwitchArch()

switchstack()

struct switchframe

...

24 / 26

COS: switchstack – switch kernel threads

From COS kern/amd64/switch.S

9 # switch(uint64_t *oldsp, uint64_t newsp)
10 # %rdi: oldsp
11 # %rsi: newsp
12 FUNC_BEGIN(switchstack)
13 # Save callee saved registers of old thread
14 pushq %rbp
15 pushq %rdi
16 pushq %rbx
17 pushq %r12
18 pushq %r13
19 pushq %r14
20 pushq %r15
21
22 # Switch stack from old to new thread
23 movq %rsp, (%rdi)
24 movq %rsi, %rsp

25 / 26

COS: switchstack – switch kernel threads (con’t)

25
26 # Restore callee saved registers of new thread
27 popq %r15
28 popq %r14
29 popq %r13
30 popq %r12
31 popq %rbx
32 popq %rdi
33 popq %rbp
34 ret
35 FUNC_END(switchstack)

26 / 26

	Threads
	Case Study: Go Language and Runtime
	How to implement threads in COS

