
CS350: Assignment 0 – Basic Setup

Tavian Barnes, Emil Tsalapatis

For this course, you will be writing code for a small operating system named
CastorOS. CastorOS is an educational OS that runs on real hardware or in a
virtual machine [10]. In the course of the assignments we will write code to boot
and run CastorOS, and then add system calls to it to implement fundamental
OS functionality for loading programs, managing processes and accessing the
file system.

You will be running CastorOS using the QEMU emulator [6] that runs the
entire OS inside a userspace process. QEMU emulates [3] real hardware, so the
OS runs just as it would on bare metal. QEMU is available on Linux and MacOS,
and on Windows through WSL [9].

This assignment will get you familiar with downloading, editing, and sub-
mitting the CastorOS code, to prepare you for more difficult future assignments.
The code as-is will not compile; it is your job to find the error and make a simple
change so it will build successfully. Once you’ve done that, the OS will be able
to start booting, but it will not finish booting successfully yet. Getting the boot
process to succeed will be your task for assignment 1.

1 The CS350 Client

You will use the client.py command line tool to interact with the CS350
submission server. The tool is a script that captures the changes to your Git
repository, submits your work and allows you to check the status of your sub-
mission.

1.1 Setting Up the Submission Client

First, download client.py from the course website [2]. To authenticate with
the submission server, you’ll need a username and a magic string. The username
is your 8-character UW ID. You will receive the magic string by email from
cs350-noreply@uwaterloo.ca. Do not share your magic string with anyone
else.

Edit client.py directly to set the STUDENT variable to your username, and
the MAGIC variable to your magic string. To test whether you have entered your
credentials correctly, run:

$ python client.py ping



CS350 Server is active

$ python client.py status

Last Active Submission: None

Grades: None

The client.py ping command confirms that the submission server is ac-
cessible from your machine. If so, the client.py status command ensures you
have the proper credentials. If you have properly added your credentials to the
client, the server will respond with your last active submission and your grades.

1.2 Downloading Castor OS

Next, download the latest version of the CastorOS source:

$ python client.py download

The command requests CastorOS’s source from the submission server and
places it in the current directory. Use tar to unpack the source into a castoros

directory that you will develop your solutions in.

$ tar zxvf castoros-latest.tar.gz

The source tree includes the userspace, kernel, and tools for the OS. The
tree looks as follows:

castoros

|--AUTHORS

|--bin

|--build

|--include

|--lib

|--LICENSE

|--pxelinux

|--release

|--sbin

|--SConstruct

|--sys

|--tests

The source tree holds the different userspace components and the kernel
in separate directories. The kernel is entirely within the sys/ directory and
includes device drivers, system calls and core subsystems. Userspace programs
are entirely within the bin/ and sbin/ directories. These programs use the
system API defined within the headers in include. The lib directory holds
userspace shared libraries like libc that implement the userspace part of this
API and often interface with the kernel. The build directory is initially empty
and serves as a destination for the compiled kernel binary and disk image.

2



2 Getting Started

CastorOS uses the SCons [7] build system to compile the OS and create the
runnable image. If you are using linux.student.cs.uwaterloo.ca, this is al-
ready installed for you. Otherwise, you may have to install it yourself. With
SCons installed, the entire compilation process happens by running the scons

command in the castoros source directory.
You must configure SCons to use the LLVM [8] 15 toolchain to compile and

link the image. OS images must conform to a very precise layout specification.
Different compilers or even versions of the same compiler however generate
different layouts for the same code and build arguments. LLVM 15 has been
confirmed to produce a correct image so we will be using it for all assignments.

Ensure that SCons uses LLVM 15 by creating a file called Local.sc in the
castoros directory which sets the exact compiler (CC) and linker (LINK) to use.
Your Local.sc file should look like this:

$ cat Local.sc

CC="clang-15"

LINK="clang-15"

The above configuration will work on the student.cs environment. The
Clang command may have a different name under different OSes (for example,
clang15). Please consult your OS’s documentation for more details if running
clang-15 fails.

Note: mac OS uses Mach-O as it’s binary format, and does not use the ELF
file format used by COS. To build on a mac OS machine you will need to install
Clang from your favorite package manager (assuming it includes lld support).
Importantly the LINK parameter will point to your LLVM’s ld.lld instead of
the clang binary.

For example it might look something like this depending where your clang
distribution is installed:
CC="/opt/local/libexec/llvm-15/bin/clang"

LINK="/opt/local/libexec/llvm-15/bin/ld.lld"

2.1 Fixing the Error

Once the build is configured correctly, there should be a single file with a com-
piler error:

$ scons

scons: Reading SConscript files ...

...

1 error generated.

scons: building terminated because of errors.

Open that file and follow the instructions near the line with the error to
complete the assignment. You should only have to change one line of code.

3



2.2 Running CastorOS

A successful build will create a disk image in build/bootdisk.img and a kernel
image in build/sys/castor.

$ scons

scons: Reading SConscript files ...

...

scons: done building targets.

$ ls -lh build/bootdisk.img build/sys/castor

-rw-r----- 1 user users 128M Sep 11 16:24 build/bootdisk.img

-rwxr-x--- 1 user users 189K Sep 11 16:24 build/sys/castor

We start up CastorOS by passing the outputs of the compilation process to
QEMU. QEMU uses the disk image to emulate a hard disk. The disk image
holds a file system with the userspace utilities, configuration files and user data.
The kernel image only includes the kernel and is separate because it must be
passed directly to QEMU for the machine to boot.

The kernel image conforms to the Multiboot specification [5] used by QEMU
to set up the kernel for execution at boot time. This format is widely used by
bootloaders [1]. CastorOS can thus be installed on real hardware using any
Multiboot compatible bootloader. You do not need to run CastorOS on bare
metal for the assignments.

To boot CastorOS in a QEMU virtual machine, run the following command
from a terminal:

$ qemu-system-x86_64 \

-smp cpus=1 \

-kernel build/sys/castor \

-hda build/bootdisk.img \

-nic none \

-nographic

The backslashes (\) escape newlines to allow the command to be split into
multiple lines. -smp cpus=1 tells QEMU to emulate a single CPU for now.
-kernel tells QEMU which kernel to boot. -hda sets up an emulated IDE hard
drive with the given image. -nic none disables the Network Interface Card,
and -nographic disables the graphical framebuffer [4]. You will interact with
the machine through a serial console instead, directly in your terminal.

The output should look something like this:

SeaBIOS (version rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org)

Booting from ROM..Castor Operating System

Invalid magic number: 0x0

flags = 0x24f

mem_lower = 639KB, mem_upper = 129920KB

boot_device = 0x8000ffff

4



cmdline = build/sys/castor mods_count = 0, mods_addr = 0x43b000

mmap_addr = 0x9000, mmap_length = 0xa8

size = 0x14, base_addr = 0x0, length = 0x9fc00, type = 0x1

<... omitted...>

Initializing GDT... Done!

Initializing TSS... Done!

Initializing IDT... Done!

Initializing Syscall... Done!

Initializing PMAP ... Done!

Initializing XMEM ... Done!

<... omitted ...>

loader: Offset VAddr FileSize MemSize

loader: 00000000 0000000000200000 00001744 00001744

loader: AllocMap 0000000000200000 00001744

loader: 00001750 0000000000202750 00004049 00004049

loader: AllocMap 0000000000202000 00004799

loader: 000057a0 00000000002077a0 00000200 000007a8

loader: AllocMap 0000000000207000 00000f48

loader: Jumping to userspace

CPU 0

Interrupt 14 Error Code: 0000000000000004

<Debug Information>

Entered Debugger!

kdbg>

3 Submitting Your Solutions

After completing the assignment, use git commit to commit your change to the
local git repository.The commit should only modify the sys/dev/console.c

file. If it modifies any other files the server will automatically reject
the submission. Next, use client.py patch to generate a patch from your
local source tree:

$ python client.py patch

This will create a file called “castoros.patch” and in the current working
directory. The last step is to submit the patch to the submission system:

$ python client.py submit -a asst0

The command sends the patch to the submission server and queues it for
evaluation. The submission server takes about an hour to evaluate sub-
missions. Submitting a new patch overwrites any active submissions
without evaluating them.

The status of your submission can be monitored using the client.py status

command we saw earlier:

5



$ python client.py status

6



References

[1] Bootloader. https://en.wikipedia.org/wiki/Bootloader, August
2024.

[2] CS 350 - Operating Systems. https://student.cs.uwaterloo.ca/

~cs350/F24/assignments/, August 2024.

[3] Emulator. https://en.wikipedia.org/wiki/Emulator, August 2024.

[4] Framebuffer. https://en.wikipedia.org/wiki/Framebuffer, August
2024.

[5] Multiboot Specification. https://www.gnu.org/software/grub/manual/
multiboot/multiboot.html, August 2024.

[6] QEMU. https://www.qemu.org/, August 2024.

[7] SCons: A software construction tool. http://scons.org, August 2024.

[8] The LLVM Compiler Infrastructure Project. https://llvm.org, August
2024.

[9] What is the Windows Subsystem for Linux? https://learn.microsoft.

com/en-us/windows/wsl/about, August 2024.

[10] What is Virtualization? https://aws.amazon.com/what-is/

virtualization, August 2024.

7

https://en.wikipedia.org/wiki/Bootloader
https://student.cs.uwaterloo.ca/~cs350/F24/assignments/
https://student.cs.uwaterloo.ca/~cs350/F24/assignments/
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Framebuffer
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.qemu.org/
http://scons.org
https://llvm.org
https://learn.microsoft.com/en-us/windows/wsl/about
https://learn.microsoft.com/en-us/windows/wsl/about
https://aws.amazon.com/what-is/virtualization
https://aws.amazon.com/what-is/virtualization

	The CS350 Client
	Setting Up the Submission Client
	Downloading Castor OS

	Getting Started
	Fixing the Error
	Running CastorOS

	Submitting Your Solutions

