
CS350: Assignment 2 – Kernel-side Synchronization

Tavian Barnes, Emil Tsalapatis

1 Introduction

In this assignment we will be implementing the synchronization primitives and process control system calls
that are missing in CastorOS. You will implement kernel mutexes and condition variables, then use them to
implement the Process_Wait function that underpins the waitpid system call.

Processes in CastorOS (and almost all other UNIX-like systems) are organized into a tree where the
parents point to their children. Parents can query the status of their child processes and wait for them to
complete using their PID (process ID) which uniquely identifies each process in the system.

For example, shells receive commands from the user and spawn a new child process to execute each
command. The shell then waits for the child process by passing its PID to waitpid. Only after the child
exits will the shell resume taking input from the command line. Prior to this assignment, you may have seen
the shell prompt print too early, like this:

Shell> echo hello world

Shell> hello world

Once you complete the assignment, the shell will be able to properly wait for its children:

Shell> echo hello world

hello world

Shell>

2 Implementing Mutexes

We will first be implementing mutexes for locking. Mutexes are short for mutual exclusion locks that allow
us to create a critical section in our code, enclosed by Mutex_Lock and Mutex_Unlock. Only one thread
will enter the critical section at a time, to prevent concurrently executing code when manipulating shared
memory. Furthermore, unlike spinlocks, mutexes sleep efficiently when waiting for long periods of time.

Below is a simple example of a lock that protects data by wrapping the code that accesses it into a critical
section:

int my_counter;

void increment(Mutex_Lock *a, int num) {

Mutex_Lock(a);

my_counter += num;

Mutex_Unlock(a);

}

void decrement(lock *a, int num) {



2 IMPLEMENTING MUTEXES

Mutex_Lock(a);

my_counter -= num;

Mutex_Unlock(a);

}

The critical section(s) prevent both functions from manipulating my_counter concurrently. Recall that
even though our operation on my_counter is on a single line, it can be made up of multiple instructions and
is not guarenteed to be atomic. Furthermore, only certain instructions guarantee atomicity; otherwise, we
need mutexes or spinlocks to protect shared memory accesses.

The kernel Mutex API is made up of just a few functions:

void Mutex_Init(Mutex *mtx, const char *name);

void Mutex_Destroy(Mutex *mtx);

void Mutex_Lock(Mutex *mtx);

int Mutex_TryLock(Mutex *mtx);

void Mutex_Unlock(Mutex *mtx);

New mutexes are initialized by passing them Mutex_Init. Threads then use the mutex by calling
Mutex_Lock to take ownership of it. If no other thread holds the mutex, it will be acquired immediately.
Otherwise, the Mutex_Lock call blocks the thread and puts it to sleep. The system will wake up the thread
when the owner of the lock calls Mutex_Unlock to release it. A thread that wants to take the lock if possible,
but does not want to block if the lock is already owned can call Mutex_TryLock instead of Mutex_Lock. The
Mutex_TryLock function returns failure instead of blocking.

The struct Mutex data structures that contains the state of the mutex to better understand how to
implement it. The data structure is found in sys/include/mutex.h and is:

typedef struct Mutex {

uint64_t status;

Thread *owner;

Spinlock lock;

WaitChannel chan;

LIST_ENTRY(Mutex) buckets;

} Mutex;

Listing 1: A CastorOS mutex.

The status field describes whether the mutex is held. The two possible values are MTX_STATUS_UNLOCKED
and MTX_STATUS_LOCKED. This field is updated by the Lock, TryLock, and Unlock routines.

The owner field holds a pointer to the Thread structure of the thread that holds the lock. We use the
field to help debug invalid uses of the Mutex API, such as trying to unlock a mutex the current thread does
not own. threads trying to unlock a lock they do not own. This field is updated in tandem with the status
field.

The lock field provides locking for the Mutex data structure itself. When using the mutex API we modify
multiple fields at once, and we must avoid data races between threads trying to inspect or modify the same
lock.

The chan variable represents the wait channel of the lock. A wait channel is a queue used to notify
threads when the lock is released. A Mutex_Lock call on an already owned lock results in the thread instead
registering itself with the wait channel and going to sleep. A Mutex_Unlock call will wake up a thread sleeping
on the wait channel, if such a thread exists.

The mutex implementation belongs in sys/kern/mutex.c. Currently, there are three lines that say

2



3 IMPLEMENTING CONDITION VARIABLES

/* XXXFILLMEIN */

for each of Mutex_Lock, Mutex_TryLock, and Mutex_Unlock.

Tip: Each function should begin by locking the mutex’s internal spinlock with Spinlock_Lock. Be sure to
unlock it before returning.

The locking functions should check the status field to see if the mutex is already held (mtx->status ==

MTX_STATUS_LOCKED). If it is, Mutex_TryLock should return EBUSY. Mutex_Lock, on the other hand, should
use the wait channel to sleep until it is unlocked. The wait channel API looks like this:

// Lock a wait channel before sleeping on it.

void WaitChannel_Lock(WaitChannel *wc);

// Put the current thread to sleep on a wait channel.

// The wait channel must be locked before this call,

// and will be unlocked after it returns.

void WaitChannel_Sleep(WaitChannel *wc);

// Wake up one thread currently sleeping on the wait channel.

// The wait channel should not be locked before this call.

void WaitChannel_Wake(WaitChannel *wc);

// Wake up all threads currently sleeping on the wait channel.

// The wait channel should not be locked before this call.

void WaitChannel_WakeAll(WaitChannel *wc);

Tip: Mutex_Lock should use hand-over-hand locking for the wait channel. The spinlock should be unlocked
before sleeping, then re-locked afterwards.

Once the two locking functions see that the mutex is unlocked, they should lock it by setting the status
to MTX_STATUS_LOCKED, and setting the owner to Sched_Current(). Mutex_Unlock should do the opposite:
set status to MTX_STATUS_UNLOCKED, set owner to NULL, and wake up a waiting thread, if there is one.

3 Implementing Condition Variables

Next we will implement condition variables (CVs). CVs are a synchronization primitive used to wait for an
arbitrary condition to become true. Condition variables have similar semantics to the wait channels that
were used to implement mutexes. The definition of the data structure and its API are in include/sys/cv.h:

typedef struct CV {

WaitChannel chan;

} CV;

void CV_Init(CV *cv, const char *name);

void CV_Destroy(CV *cv);

void CV_Wait(CV *cv, Mutex *mtx);

void CV_Signal(CV *cv);

void CV_Broadcast(CV *cv);

3



4 IMPLEMENTING WAITPID

CVs are a simple wrapper over wait channels, and have an almost identical API. The CV_Signal call
corresponds to WaitChannel_Wake, andCV_Broadcast corresponds to WaitChannel_WakeAll. The only dif-
ference in the API is that the CV_Wait call also takes a mutex, which it will unlock while it waits, and re-lock
before returning.

Using CVs makes it easy to avoid deadlocks and lost wakeups. This C code uses mutexes and CVs to
solve the problem of waiting for a condition to become true before entering the critical section:

int exampleWaiter(CV *cv, Mutex *mtx) {

Mutex_Lock(mtx);

while (!necessaryCondition())

CV_Wait(cv, mtx);

doWork();

Mutex_Unlock(mtx);

}

int exampleSignaler(CV *cv) {

Mutex_Lock(mtx);

setConditionToTrue();

CV_Signal(cv, mtx);

Mutex_Unlock(mtx);

}

Fill in the CV implementation in sys/kern/cv.c. CV_Signal and CV_Broadcast are simple wrappers
over the underlying wait channel APIs. CV_Wait is slightly more complicated: it must use hand-over-hand
locking to lock the wait channel and unlock the mutex before sleeping.

Tip: Be sure to re-lock the mutex before returning from CV_Wait.

4 Implementing waitpid

Recall that waitpid is the main system call that allows a parent process to wait for a child process to exit.
The parent calls the function with the PID of the child whose exit status it wants to inspect. If the child
has exited, the call returns a status variable that includes the child’s exit status (either the return value
of main() or the value it passed to exit()). This way the parent can check whether the child completed
successfully or exited because of an error. A process that calls waitpid with the PID of a child that has not
yet exited will block until the child exits.

The wait call provides the option to wait for any child to exit instead of a specific PID. This is useful
when a process has multiple children and doesn’t know which one will complete first. For example, a shell
can use wait to print a message whenever a background process finishes:

$ sleep 2 & echo pid: $!

pid: 1000

$ sleep 1 & echo pid: $!

pid: 1001

$ wait

[2] + 1001 done sleep 1

[1] + 1000 done sleep 2

4



4 IMPLEMENTING WAITPID

Using wait, the shell can print a message as soon as any background process completes. With waitpid,
it would have to guess which one will finish first, potentially delaying the messages.

In CastorOS, the C library’s wait and waitpid functions both call the OSWait system call wrapper. wait
passes a pid of 0 to mean “any process.” The kernel syscall implementation is in Syscall_Wait, which is a
thin wrapper around Process_Wait.

Process_Wait is defined in sys/kern/process.c. Line 212 of that file currently says

// XXXFILLMEIN

/*

* Dummy waitpid implementation that returns an error. Remove and replace

* with the actual implementation from the assignment description.

*/

/* XXXREMOVE START */

return SYSCALL_PACK(ENOSYS, 0);

/* XXXREMOVE END */

These lines should be replaced with code that waits for a child process to exit. If pid == 0, it should
wait for any child; otherwise, it should wait for that specific process.

Tip: In Process_Wait, proc points to the Process structure for the parent, and pid is the PID of the child
to wait for (or 0). Once you complete the assignment, p should point to the Process structure of the child.

Processes that have exited but not yet been waited on are called zombies, so your code will make use of
these fields in the Process structure:

typedef struct Process {

...

// The list of zombie child processes

ProcessQueue zombieProc;

// Protects the zombieProc list

Mutex zombieProcLock;

// Signaled whenever a child becomes a zombie

CV zombieProcCV;

// Signaled when *this* process becomes a zombie

CV zombieProcPCV;

...

} Process;

You can start with this skeleton code and fill in the missing pieces:

Mutex_Lock(&proc->zombieProcLock);

if (pid == 0) {

// TODO: wait for the zombieProc list to be non-empty

// HINT: use TAILQ_EMPTY() and CV_Wait()

// TODO: set p to the first zombie child

// HINT: use TAILQ_FIRST()

} else {

5



6 SUBMITTING YOUR SOLUTIONS

p = Process_Lookup(pid);

// TODO: wait for p to become a zombie

// HINT: use p->procState, CV_Wait()

Process_Release(p);

}

// TODO: remove p from the list of zombies

// HINT: use TAILQ_REMOVE(..., siblingList)

Mutex_Unlock(&proc->zombieProcLock);

Tip: git grep will search the CastorOS repo for a regular expression. You can use it to find example uses
of unfamiliar APIs, for example:

$ git grep --line-number procState

...

sys/kern/sched.c:144: proc->procState = PROC_STATE_ZOMBIE;

This tells you that line 144 of sys/kern/sched.c turns a process into a zombie. Looking at the sur-
rounding code may help you with the assignment.

5 Testing

We will be evaluating our work using three tests built into the CastorOS image. These tests are spawnanytest,
spawnsingletest, and spawnmultipletest. The source for these tests is in the tests/ directory in the
castoros repository. We run the tests inside CastorOS from the shell the same ways we ran cat and ls for
Assignment 1.

All three tests require OSWait. The spawnsingletest program creates a single child process, then waits
for it to finish by calling OSWait with the child’s PID. The test repeats this process 10 times before exiting
successfully. The spawnmultipletest program creates 10 children at once, then waits on all of them by
calling OSWait on each of their PIDs sequentially. The spawnanytest program does the same thing but
instead waits 10 times for any child to exit by calling OSWait with the special PID value of 0.

6 Submitting Your Solutions

Submitting Assignment 2 works just like Assignment 0. Use git commit to create a single commit with your
Assignment 2 solution, (on top of your previous commits with your Assignment 0 and 1 solutions). The
commit should only include sys/kern/mutex.c, sys/kern/cv.c, and sys/kern/process.c. If the
commit includes any other files, the server will automatically reject the submission. Next, follow
these steps to generate and submit your Assignment 2 patch.

$ python client.py patch

$ python client.py submit -a asst2

The status of your submission can be monitored using the client.py status command:

6



6 SUBMITTING YOUR SOLUTIONS

$ python client.py status -a asst2

TOTAL: 9/9

Evaluated at 10/18/2024 12:00

=========END OF SUBMISSION=========

Appendix: Linked Lists

There are two ways of coding a linked list for a data type T. The first uses an external linked list E, a separate
data structure whose every instance holds a reference to the next element E in the list and a reference to an
instance of type T that holds the actual data:

struct E {

struct E *next;

struct T *data;

}

The external linked list approach is requires an extra allocation for every element we add to the list and
makes data management more complicated. The alternative approach, an internal linked list, embeds the
data structure E inside data structure T like in the case of Process:

struct T {

...

struct E *next;

}

This approach does not require extra allocations when inserting into a list. The downside of internal
linked lists is that struct E is polymorphic and is dependent on struct T, but the C language’s type
system does not include polymorphism. Most operating systems use the C preprocessor-related techniques
to provide an internal linked list API, as is the case with CastorOS. For more details on how internal linked
lists are implemented please refer to sys/include/queue.h that holds the definitions for the LIST_ENTRY .

7


	Introduction
	Implementing Mutexes
	Implementing Condition Variables
	Implementing waitpid
	Testing
	Submitting Your Solutions

