
CS350: Assignment 3 – File Systems

Tavian Barnes, Emil Tsalapatis

1 Introduction

For this assignment, we will improve CastorOS’s file system (called O2FS) to handle large files and directories.
The current implementation does not support files larger than a few megabytes. Raising this limit will require
changes to the kernel’s file system implementation as well as the userspace newfs_o2fs tool which builds
the disk image when you run scons.

2 Background: File Systems

File systems are the primary way that users and programmers interact with storage devices (hard drives,
SSDs, microSD cards, etc.) File systems organize storage into individual files which are grouped together
into directories (folders, on Windows). Directories can be nested within each other to form human-readable
paths like /home/user/Downloads/a3.pdf. The main goal of most file systems is to ensure that the data
survives crashes and reboots, a property called persistence.

Users can navigate the file system with shell commands like cd and ls, or with graphical interfaces like
Finder (macOS) or Explorer (Windows). Programmers interact with the file system through system calls.
On UNIX-like operating systems, these system calls use file descriptors. File descriptors tell the kernel
which file we’d like to operate on. Internally, the kernel keeps a table that maps each file descriptor to a data
structure that keeps track of details like where the file is on disk, and the current read/write offsets inside
it.

Listing 1: Using file descriptors to interact with the file system.

// Open a file for reading (RD) and writing (WR)

int fd = open("/usr/etc/example.conf", O_RDWR);

// From now on, all uses of ‘fd’ refer to that file

// Read and write up to 64 bytes of the file

char buf[64];

ssize_t bytes = read(fd, buf, sizeof(buf));

write(fd, buf, bytes);

// Close the file

close(fd);

// From here on, ‘fd’ no longer refers to that file

2.1 Offset-to-block translation 3 CHANGING THE ON-DISK FORMAT

2.1 Offset-to-block translation

Files appear to be a contiguous stream of bytes, but they are not necessarily stored contiguously on disk.
Storage devices store data in fixed-size blocks, and each block of a file may be stored in a different disk block.
For example, the first 512 bytes of a file could be stored in disk block 123, and the next 512 bytes could be
stored in disk block 321. When a user reads a range of the file like [504, 520), the file system knows to find
the first half of the data in block 123, and the second half in block 321.

Listing 2: Reading a specific range from a file.

// Open the file read-only

int fd = open("/usr/etc/example.conf", O_RDONLY);

// Seek to the 504th byte

lseek(fd, 504, SEEK_SET);

// Read 16 bytes (up to byte 520)

char buf[16];

read(fd, buf, sizeof(buf));

Every file system uses a different data structure to map file offsets to disk blocks. Modern file systems
tend to use (variants of) B-trees, but O2FS uses a simple array. The array has a fixed size of 64, meaning
O2FS cannot represent files larger than 64 blocks. WIth the default O2FS block size of 16 KiB, this limits
files to a maximum of 64 × 16 KiB = 1 MiB. In this assignment, you will change the data structure O2FS
uses for block mapping, increasing the maximum file size to 64 MiB.

3 Changing the On-Disk Format

When you build CastorOS with scons, a disk image is generated in the path build/bootdisk.img. This
image contains an O2FS file system that holds all of the files you see from within CastorOS. The image gets
generated by the newfs_o2fs command, then gets read and written by the CastorOS kernel when you boot
it up. For this to work, both newfs_o2fs and the kernel must agree on the on-disk format of the file system.

The header sys/fs/o2fs/o2fs.h defines the on-disk format of O2FS. It is shared between newfs_o2fs

and the kernel to keep the on-disk format in sync. The structures from that header exactly match the binary
layout of parts of an O2FS file system image. Here are some important parts:

Listing 3: O2FS on-disk format.

// Super block

typedef struct SuperBlock {

...

uint64_t blockSize; /* Block Size in Bytes */

...

} SuperBlock;

// Block Pointer: Address raw blocks on the disk

typedef struct BPtr {

uint8_t hash[32];

uint64_t device;

uint64_t offset;

uint64_t _rsvd0;

uint64_t _rsvd1;

} BPtr;

2

3 CHANGING THE ON-DISK FORMAT

// Maximum number of direct blocks

#define O2FS_DIRECT_PTR (64)

// Block Nodes: Contain pointers to pieces of a file

typedef struct BNode {

uint8_t magic[8];

uint16_t versionMajor;

uint16_t versionMinor;

uint32_t flags;

uint64_t size;

BPtr direct[O2FS_DIRECT_PTR];

} BNode;

The super block contains global information about the whole file system, including the disk block size.
A block pointer (BPtr) points to a specific disk block. BPtr::device specifies which disk device contains
the block; since we only have one disk, it is mostly unused. BPtr::offset specifies the on-disk offset of the
pointed-to block.

A block node (BNode) represents a single file. The BNode::direct array maps file blocks to disk blocks.
These are called direct pointers because each pointer directly points to some file contents on disk. Mapping
a file offset to a disk offset looks like this:

Listing 4: Mapping direct blocks with O2FS.

uint64_t O2FS_MapDirect(SuperBlock *sb, BNode *bn, uint64_t off) {

uint64_t bs = sb->blockSize;

// Bytes [0, bs) are stored at bn->direct[0].offset

// Bytes [bs, 2*bs) are stored at bn->direct[1].offset

// etc., so divide by ‘bs’ to get the block number

uint64_t i = off / bs;

assert(i < O2FS_DIRECT_PTR);

// The start of the block that contains the requested offset

uint64_t block = bn->direct[i].offset;

// The offset within the block should look like

// [0, 1, ..., bs-2, bs-1, 0, 1, ..., bs-2, bs-1, 0, 1, ...]

// so we can use the modulo (%) operator

uint64_t block_off = off % bs;

return block + block_off;

}

3

3 CHANGING THE ON-DISK FORMAT

The length of the BNode::direct array limits the maximum size of a file. To raise the limit, we could
just lengthen this array, but that would waste space for small files. A 64 MiB file needs 4, 096 block pointers,
meaning the direct array would take up 256 KiB by itself. Almost all of it would be unused by small files.

Like all1 problems in computer science, we can solve this with an additional layer of indirection. Specifi-
cally, we will introduce indirect blocks: disk blocks containing nothing but an array of block pointers. Make
the following changes to sys/fs/o2fs/o2fs.h:

Listing 5: The new on-disk layout.

// New macro: the number of *indirect* blocks in a file

#define O2FS_INDIRECT_PTR (64)

typedef struct BNode {

...

// Rename this field, and update the array bounds

BPtr indirect[O2FS_INDIRECT_PTR];

} BNode;

// New struct: an indirect block

typedef struct BInd {

BPtr direct[O2FS_DIRECT_PTR];

} BInd;

The new layout works like a multi-dimensional array. Given indices i and j, we would find the corre-
sponding block like this:

Listing 6: Interpreting indirect blocks.

// Read the ‘i’th *indirect* block

uint64_t indirect_off = bn->indirect[i].offset;

BInd *indirect = O2FS_ReadBlock(indirect_off);

// Get the ‘j’th *direct* block

uint64_t direct_off = indirect->direct[j].offset;

Tip: The indices (i, j) correspond to the nth block, at the byte offset off within the file, where

n = i * O2FS INDIRECT PTR + j,

off = n * sb->blockSize.

How would you compute n, i, and j, given the byte offset off?

The type of the BNode block array didn’t change, but its meaning did: each entry now points to an
indirect block. Inside those indirect blocks, another array of direct blocks tells us where the file’s contents
are on disk. Renaming the array will cause a compiler error on any code using the old meaning, showing us
all the places we need to fix. The rest of the assignment will involve fixing those errors.

1Almost all

4

4 THE FILE SYSTEM CREATION TOOL

4 The File System Creation Tool

The newfs_o2fs tool is implemented in sbin/newfs_o2fs/newfs_o2fs.c. It has two important utility
functions to be aware of:

Listing 7: newfs_o2fs.c utility functions.

// Adds a new block to the file system.

// Returns the offset of the new block.

uint64_t AppendBlock(const void *buf, size_t len);

// Overwrites an existing block on the file system.

void FlushBlock(uint64_t offset, const void *buf, size_t len);

They can be used like this to add new BNodes to the disk image, or overwrite existing ones:

Listing 8: Creating and updating BNodes.

// Create a zero-initialized BNode in memory

BNode node = {0};

// Add it to the file system

uint64_t offset = AppendBlock(&node, sizeof(node));

// Update the BNode in memory

node.size = 100;

// Update the BNode on disk

FlushBlock(offset, &node, sizeof(node));

There are two functions that we will need to update for the new on-disk format: AddFile and AddDirectory.
We will start by updating AddFile, which copies an existing file on the host into the O2FS file system
image. The current implementation reads one block of the source file at a time, copies it to the image with
AppendBlock, and appends the new block to the direct block array.

Listing 9: AddFile main loop.

ObjID *AddFile(const char *file) {

int i = 0;

BNode node;

...

while (1) {

int len = ReadBlock(fd, tempbuf, blockSize);

// [error checking omitted]

...

node.direct[i].device = 0;

node.direct[i].offset = AppendBlock(tempbuf, len);

node.size += (uint64_t)len;

i += 1;

}

...

uint64_t offset = AppendBlock(&node, sizeof(node));

...

}

5

4 THE FILE SYSTEM CREATION TOOL

Change this code to add each new block of file contents to an indirect block. When the indirect block
is full, add it to the indirect block array, and start working on a new indirect block. This pseudo-code may
help get you started:

Listing 10: AddFile with indirect blocks.

ObjID *AddFile(const char *file) {

int i = 0, j = 0;

BInd ind = {0};

BNode node;

...

while (1) {

...

// [delete the node.direct[i] updates]

node.size += (uint64_t)len;

ind.direct[j].device = 0;

ind.direct[j].offset = AppendBlock(tempbuf, len);

j += 1;

if (/* the indirect block is full */) {

/* append the indirect block to the disk image */

/* set node.indirect[i] to the indirect block offset */

/* clear ‘ind’ with zeros to re-use it for the next indirect block */

i += 1;

j = 0;

}

}

if (/* the last indirect block is not empty */) {

/* append that indirect block too */

}

...

}

The other function we need to update is AddDirectory, which creates directories in the O2FS image.
O2FS directories fit in a single block, so the code to create their BNodes is simpler:

Listing 11: AddDirectory BNode creation.

ObjID *AddDirectory() {

...

// Write Inode

memset(&node, 0, sizeof(node));

memcpy(node.magic, BNODE_MAGIC, 8);

node.versionMajor = O2FS_VERSION_MAJOR;

node.versionMinor = O2FS_VERSION_MINOR;

node.size = size;

node.direct[0].device = 0;

node.direct[0].offset = offset;

uint64_t nodeoff = AppendBlock(&node, sizeof(node));

...

}

Change this code to create an indirect block with ind.direct[0] pointing to offset, then point
node.indirect[0] at the new indirect block. With these modifications the image creation tool should

6

5 THE KERNEL READ PATH

compile and generate a correct CastorOS O2FS image. However, we must also modify the file system itself
to properly read and write to the updated image. In the next sections we will be updating O2FS to do just
that.

5 The Kernel Read Path

We will now update the CastorOS kernel to be able to read the new O2FS on-disk format. We will be working
completely within the sys/fs/o2fs/o2fs.c file that holds the kernel’s O2FS file system implementation.
Functions on the read path like O2FS_Read and O2FS_Lookup rely on the O2FSResolveBuf helper function
to read a particular block from a file. Fixing this function is enough to fix the entire read path.

Listing 12: O2FSResolveBuf implementation.

// Resolve block number ‘b’ within a file.

// Returns 0 on success, with *dentp set to the BufCacheEntry.

int O2FSResolveBuf(VNode *vn, uint64_t b, BufCacheEntry **dentp) {

BufCacheEntry *vnent = (BufCacheEntry *)vn->fsptr;

BufCacheEntry *dent;

BNode *bn = vnent->buffer;

int status;

status = BufCache_Read(vn->disk, bn->direct[b].offset, &dent);

if (status < 0)

return status;

*dentp = dent;

return status;

}

This function uses the buffer cache to read from the disk. The buffer cache exists because disk I/O is
slow. Using the buffer cache, we only have to read any given block from disk once. Future reads of the same
block will (hopefully) hit the cache and not require I/O. The buffer cache has this API:

Listing 13: Buffer cache API.

// Read a block from a disk. Returns 0 on success, with *entry set to the new

// buffer cache entry. (*entry)->buffer contains the actual bytes read from the

// disk. Once you’re done with the entry, call BufCache_Release() to free it.

int BufCache_Read(Disk *disk, uint64_t diskOffset, BufCacheEntry **entry);

// Write a buffer cache entry back to the disk. Until you call this function,

// any updates to entry->buffer will not be saved. Returns 0 on success.

int BufCache_Write(BufCacheEntry *entry);

// Release a buffer cache entry.

void BufCache_Release(BufCacheEntry *entry);

Modify the O2FSResolveBuf implementation to account for indirect blocks. Refer to page 4 for how to
compute the appropriate array indices. This pseudo-code may help:

7

6 THE KERNEL WRITE PATH

Listing 14: O2FSResolveBuf pseudo-code.

int O2FSResolveBuf(VNode *vn, uint64_t b, BufCacheEntry **dentp) {

...

size_t i = /* indirect block index for ‘b’ */;

size_t j = /* direct block index for ‘b’ */;

BufCacheEntry *ient; // Indirect block bufcache entry

status = BufCache_Read(vn->disk, /* indirect block ‘i’ */, &ient);

// [error checking]

BInd *ind = ient->buffer; // The indirect block itself

status = BufCache_Read(vn->disk, /* direct block ‘j‘ */, &dent);

// [error checking]

// Release ‘ient’

*dentp = dent;

return status;

}

6 The Kernel Write Path

Finally, we modify the write path to allow CastorOS to write large files to the file system. For this we must
modify two calls in the O2FS file system, O2FS_Write and O2FSGrowVNode. The O2FS_Write call moves the
data from kernel memory to the buffer cache and initiates the IO. O2FSGrowVNode is a helper routine that
adds new blocks to the file when a write grows the file enough to allocate more space on the disk. O2FS_Write
calls O2FSGrowVNode when necessary. O2FS_Write uses the O2FSResolveBuf function to find the right disk
block, and we have already adapted it for indirect blocks, so we do not need to directly modify the function.

We only need to adjust O2FSGrowVNode that the write call uses to expand the file. The file system allocates
a block to a file the first time the block is about to be written to. The function currently assumes all blocks
are direct blocks, so we need to adjust it to allocate indirect blocks.

The function is relatively short:

if (filesz > (vfs->blksize * O2FS_DIRECT_PTR))

return -EINVAL;

for (int i = blkstart; i < ((filesz + vfs->blksize - 1) / vfs->blksize); i++) {

if (bn->indirect[i].offset != 0)

continue;

uint64_t blkno = O2FSBAlloc(vfs);

if (blkno == 0) {

return -ENOSPC;

}

bn->indirect[i].offset = blkno * vfs->blksize;

}

8

7 TESTING AND SUBMITTING YOUR WORK

The function first tests if the file can be resized to the requested size, or if its beyond the system limit.
The existing code assumes a translation array of 64, so a file size larger than 64 blocks is impossible. The
code then goes through the translation array for all blocks up to the requested size. For each empty entry
the routine allocates a disk block using O2FSBAlloc and adjusts the translation array. The function then
adjusts the file size of the BNode and writes it out using BufCache_Write.

The main change to O2FSGrowVNode is in the inner main loop. First, as we iterate we must read the
BNode’s indirect blocks to check whether there are direct blocks allocated for a given file offset. Every time
we allocate a new direct block we must also update the indirect block. We must update indirect blocks to
the disk as we modify them to persist the changes we have made. If an indirect block is not allocated, we
must create it and attach it to the BNode. Finally, we adjust the file size limit check in the beginning of the
function to be vfs->blksize * 64 * 64, to reflect the larger number of blocks a file can access.

We provide the pseudocode for the main loop in the next page. With this addition the file system should
be able to write files up to 256 MiB.

Algorithm 6.1: Indirect Blocks for O2FSGrowVNode

1 for file block offset in [current file end, requested file end] do
2 calculate the indirect, direct offsets from the block offset
3 if indirect block unallocated then
4 allocate indirect block
5 BufCache_Read(indirect block number, ient)
6 zero out indirect block
7 attach indirect block to vnode

8 else
9 BufCache_Read(indirect block number, ient)

10 ind← ient.buffer

11 if direct block allocated then
12 BufCache_Release(ient)
13 continue

14 allocate direct block
15 insert direct block number to indirect block
16 BufCache_Write(ient)
17 BufCache_Release(ient)

7 Testing and Submitting Your Work

Submitting Assignment 3 works just like Assignment 0. Use git commit to create a single commit with your
Assignment 3 solution (on top of your previous commits with your Assignment 0, 1, and 2 solutions). The
commit should only include sbin/newfs_o2fs/newfs_o2fs.c and sys/fs/o2fs.[ch]. If the commit
includes any other files, the server will automatically reject the submission. Next, follow these
steps to generate and submit your Assignment 3 patch.

$ python client.py patch

$ python client.py submit -a asst3

The status of your submission can be monitored using the client.py status command:

9

7 TESTING AND SUBMITTING YOUR WORK

$ python client.py status -a asst3

TOTAL: 9/9

Evaluated at 11/11/2024 12:00

=========END OF SUBMISSION=========

We will be evaluating your work using three tests built into the CastorOS image. These tests are fiotest,
writetest, and the newfs command to build images. The source for these tests is in the tests/ directory
in the castoros repository.

These three tests evaluate our implementation of the file system IO paths and that the image is generated
such that it boots. If your assignment is correct you should be able to support 20MB files.

10

	Introduction
	Background: File Systems
	Offset-to-block translation

	Changing the On-Disk Format
	The File System Creation Tool
	The Kernel Read Path
	The Kernel Write Path
	Testing and Submitting Your Work

