
CS350: Operating Systems Concurrency

A common design pattern in systems programming
is to use a thread pool to farm out the processing of
incoming tasks and scale up to use as many processors
as available. Each task is enqueued into a queue and
processed by a worker thread.

1 typedef struct Task {

2 void (*func)(void *);

3 void *arg;

4 } Task;

5
6 Task q[QUEUE_SIZE];

7 int in = 0, out = 0, count = 0;

8 bool exitRequested = false;

9 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

10 pthread_cond_t c = PTHREAD_COND_INITIALIZER;

11
12 void

13 enqueue(void (*func)(void *), void *arg) {

14 Task *t = malloc(sizeof(*t));

15
16 t->func = func;

17 t->arg = arg;

18
19 q[in] = t;

20 in = (in + 1) % BUFFER_SIZE;

21 count++;

22
23 pthread_cond_signal(&c);

24
25 }

26
27 void

28 workerthread(void *ignored) {

29 for (;;) {

30 pthread_mutex_lock(&m);

31
32 if (count == 0)

33 pthread_cond_wait(&c, &m);

34 if (exitRequested)

35 pthread_exit(NULL);

36
37 Task *t = q[out];

38 out = (out + 1) % BUFFER_SIZE;

39 count--;

40 pthread_mutex_unlock(&m);

41
42 t->func(t->arg);

43
44 free(t);

45 }

46 }

Question 1. Does the program have any data races?
If so, explain the data race and fix the code.

Question 2. Are the condition variables used cor-
rectly? If not, explain the bug(s) and fix the code.

Question 3. Write a function to terminate the
worker pool. Hint: You may need to fix the code to
left.

1


