
CS350: Operating Systems Semaphore

Spinlocks and WaitChannels are the low-level equiv-
alents to Mutexes and Condition Variables. Spinlocks
are designed to lock small sequences of code that
do not include sleeps. WaitChannels maintain a list
structure that contains a list of sleeping threads and
coordinates sleeping and waking up with the CPU
scheduler.

Below is a partial implementation of Semaphores
that uses spinlocks and waitchannels.

1 typedef struct Semaphore {

2 int sem_count;

3 Spinlock *sem_lock;

4 WaitChannel *sem_wchan;

5 } Semaphore;

6
7 Semaphore_Wait(Semaphore *sem) {

8 Spinlock_Lock(&sem->sem_lock);

9 while (sem->sem_count == 0) {

10 // Fill me in

11
12
13
14
15
16
17
18
19
20 }

21 sem->sem_count--;

22 Spinlock_Unlock(&sem->sem_lock);

23 }

24
25 Semaphore_Post(Semaphore *sem) {

26 // Fill me in

27
28
29
30
31
32
33 }

Question 1. Use hand-over-hand locking to fill in
the missing lines of Semaphore Wait.

Question 2. Fill in the missing code in
Semaphore Post.

1


