
CS350: Operating Systems

Lecture 13: Advanced File Systems

Ali Mashtizadeh

University of Waterloo

1 / 35



Outline

1 FFS in more detail

2 Crash recoverability

3 Soft updates

4 Journaling

2 / 35



Review: FFS background

• 1980s improvement to original Unix FS, which had:
I 512-byte blocks
I Free blocks in linked list
I All inodes at beginning of disk
I Low throughput: 512 bytes per average seek time

• Unix FS performance problems:
I Transfers only 512 bytes per disk access
I Eventually random allocation → 512 bytes / disk seek
I Inodes far from directory and file data
I Within directory, inodes far from each other

• Also had some usability problems:
I 14-character file names a pain
I Can’t atomically update file in crash-proof way

3 / 35



Review: FFS [McKusic] basics

• Change block size to at least 4K
I To avoid wasting space, use “fragments” for ends of files

• Cylinder groups spread inodes around disk
• Bitmaps replace free list
• FS reserves space to improve allocation

I Tunable parameter, default 10%
I Only superuser can use space when over 90% full

• Usability improvements:
I File names up to 255 characters
I Atomic rename system call
I Symbolic links assign one file name to another

4 / 35

https://rcs.uwaterloo.ca/~ali/readings/ffs.pdf


Review: FFS disk layout

superblocks

bookkeeping

cylinder
groups

inodes data blocks

information

• Each cylinder group has its own:
I Superblock
I Bookkeeping information
I Set of inodes
I Data/directory blocks

5 / 35



Superblock

• Contains file system parameters
I Disk characteristics, block size, CG info
I Information necessary to locate inode given i-number

• Replicated once per cylinder group
I At shifting offsets, so as to span multiple platters
I Contains magic number 0x011954 to find replicas if 1st superblock dies (Kirk McKusick’s

birthday?)

• Contains non-replicated “summary information”
I # blocks, fragments, inodes, directories in FS
I Flag stating if FS was cleanly unmounted

6 / 35



Bookkeeping information

• Block map
I Bit map of available fragments
I Used for allocating new blocks/fragments

• Summary info within CG
I # free inodes, blocks/frags, files, directories
I Used when picking cylinder group from which to allocate

• # free blocks by rotational position (8 positions)
I Was reasonable in 1980s when disks weren’t commonly zoned
I Back then OS could do stuff to minimize rotational delay

7 / 35



Inodes and data blocks

. . .

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirect
block

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr

• Each CG has fixed # of inodes (default one per 2K data)
• Each inode maps offset → disk block for one file
• An inode also contains metadata for its file

I permissions, access/modification/change times, link count, . . .
8 / 35



Inode allocation

• Each file or directory created requires a new inode
• New file? Put inode in same CG as directory if possible
• New directory? Use different CG from parent

I Consider CGs with greater than average # free inodes
I Chose CG with smallest # directories

• Within CG, inodes allocated randomly (next free)
I Would like related inodes as close as possible
I OK, because one CG doesn’t have that many inodes
I All inodes in CG can be read and cached with small # of reads

9 / 35



Fragment allocation

• Allocate space when user writes beyond end of file
• Want last block to be a fragment if not full-size

I If already a fragment, may contain space for write – done
I Else, must deallocate any existing fragment, allocate new

• If no appropriate free fragments, break full block
• Problem: Slow for many small writes

I May have to keep moving end of file around

• (Partial) soution: new stat struct field st_blksize
I Tells applications file system block size
I stdio library can buffer this much data

10 / 35



Block allocation

• Try to optimize for sequential access
I If available, use rotationally close block in same cylinder (obsolete)
I Otherwise, use block in same CG
I If CG totally full, find other CG with quadratic hashing

i.e., if CG #n is full, try n + 12, n + 22, n + 32, . . . (mod #CGs)
I Otherwise, search all CGs for some free space

• Problem: Don’t want one file filling up whole CG
I Otherwise other inodes will have data far away

• Solution: Break big files over many CGs
I But large extents in each CGs, so sequential access doesn’t require many seeks
I How big should extents be?

I Extent transfer time should be much greater than seek time

11 / 35



Block allocation

• Try to optimize for sequential access
I If available, use rotationally close block in same cylinder (obsolete)
I Otherwise, use block in same CG
I If CG totally full, find other CG with quadratic hashing

i.e., if CG #n is full, try n + 12, n + 22, n + 32, . . . (mod #CGs)
I Otherwise, search all CGs for some free space

• Problem: Don’t want one file filling up whole CG
I Otherwise other inodes will have data far away

• Solution: Break big files over many CGs
I But large extents in each CGs, so sequential access doesn’t require many seeks
I How big should extents be?
I Extent transfer time should be much greater than seek time

11 / 35



Directories

• Inodes like files, but with different type bits
• Contents considered as 512-byte chunks
• Each chunk has direct structure(s) with:

I 32-bit inumber
I 16-bit size of directory entry
I 8-bit file type (added later)
I 8-bit length of file name

• Coalesce when deleting
I If first direct in chunk deleted, set inumber = 0

• Periodically compact directory chunks
I But can never move directory entries across chunks
I Recall only 512-byte sector writes atomic w. power failure

12 / 35



Updating FFS for the 90s

• No longer wanted to assume rotational delay
I With disk caches, want data contiguously allocated

• Solution: Cluster writes
I FS delays writing a block back to get more blocks
I Accumulates blocks into 64K clusters, written at once

• Allocation of clusters similar to fragments/blocks
I Summary info
I Cluster map has one bit for each 64K if all free

• Also read in 64K chunks when doing read ahead

13 / 35



Outline

1 FFS in more detail

2 Crash recoverability

3 Soft updates

4 Journaling

14 / 35



Fixing corruption – fsck

• Must run FS check (fsck) program after crash
• Summary info usually bad after crash

I Scan to check free block map, block/inode counts
• System may have corrupt inodes (not simple crash)

I Bad block numbers, cross-allocation, etc.
I Do sanity check, clear inodes with garbage

• Fields in inodes may be wrong
I Count number of directory entries to verify link count, if no entries but count 6= 0, move to

lost+found
I Make sure size and used data counts match blocks

• Directories may be bad
I Holes illegal, . and .. must be valid, file names must be unique
I All directories must be reachable

15 / 35



Crash recovery permeates FS code

• Have to ensure fsck can recover file system
• Example: Suppose all data written asynchronously

I Any subset of data structures may be updated before a crash

• Delete/truncate a file, append to other file, crash
I New file may reuse block from old
I Old inode may not be updated
I Cross-allocation!
I Often inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash
I Inode points to indirect block
I But indirect block may contain garbage!

16 / 35



Ordering of updates

• Must be careful about order of updates
I Write new inode to disk before directory entry
I Remove directory name before deallocating inode
I Write cleared inode to disk before updating CG free map

• Solution: Many metadata updates synchronous
I Doing one write at a time ensures ordering
I Of course, this hurts performance
I E.g., untar much slower than disk bandwidth

• Note: Cannot update buffers on the disk queue
I E.g., say you make two updates to same directory block
I But crash recovery requires first to be synchronous
I Must wait for first write to complete before doing second

17 / 35



Performance vs. consistency

• FFS crash recoverability comes at huge cost
I Makes tasks such as untar easily 10-20 times slower
I All because you might lose power or reboot at any time

• Even while slowing ordinary usage, recovery slow
I If fsck takes one minute, then disks get 10× bigger . . .

• One solution: battery-backed RAM
I Expensive (requires specialized hardware)
I Often don’t learn battery has died until too late
I A pain if computer dies (can’t just move disk)
I If OS bug causes crash, RAM might be garbage

• Better solution: Advanced file system techniques
I Topic of rest of lecture

18 / 35



Outline

1 FFS in more detail

2 Crash recoverability

3 Soft updates

4 Journaling

19 / 35



First attempt: Ordered updates

• Want to avoid crashing after “bad” subset of writes
• Must follow 3 rules in ordering updates [Ganger]:

1. Never write pointer before initializing the structure it points to
2. Never reuse a resource before nullifying all pointers to it
3. Never clear last pointer to live resource before setting new one

• If you do this, file system will be recoverable
• Moreover, can recover quickly

I Might leak free disk space, but otherwise correct
I So start running after reboot, scavenge for space in background

• How to achieve?
I Keep a partial order on buffered blocks

20 / 35

https://rcs.uwaterloo.ca/~ali/readings/softupdates.pdf


Ordered updates (continued)

• Example: Create file A
I Block X contains an inode
I Block Y contains a directory block
I Create file A in inode block X , dir block Y

• We say Y → X , pronounced “Y depends on X”
I Means Y cannot be written before X is written
I X is called the dependee, Y the depender

• Can delay both writes, so long as order preserved
I Say you create a second file B in blocks X and Y
I Only have to write each out once for both creates

21 / 35



Problem: Cyclic dependencies

• Suppose you create file A, unlink file B
I Both files in same directory block & inode block

• Can’t write directory until A’s inode initialized
I Otherwise, after crash directory will point to bogus inode
I Worse yet, same inode # might be re-allocated
I So could end up with file name A being an unrelated file

• Can’t write inode block until B’s directory entry cleared
I Otherwise, B could end up with too small a link count
I File could be deleted while links to it still exist

• Otherwise, fsck has to be slow
I Check every directory entry and inode link count

22 / 35



Cyclic dependencies illustrated

inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈–,#0〉
〈B,#5〉
〈C,#7〉

Original organization

in use

free

original

modified

inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈A,#4〉
〈B,#5〉
〈C,#7〉

Create file A

inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈A,#4〉
〈–,#5〉
〈C,#7〉

Remove file B 23 / 35



More problems

• Crash might occur between ordered but related writes
I E.g., summary information wrong after block freed

• Block aging
I Block that always has dependency will never get written back

• Solution: Soft updates [Ganger]
I Write blocks in any order
I But keep track of dependencies
I When writing a block, temporarily roll back any changes you can’t yet commit to disk
I I.e., can’t write block with any arrows pointing to dependees

. . . but can temporarily undo whatever change requires the arrow

24 / 35

https://rcs.uwaterloo.ca/~ali/readings/softupdates.pdf


Breaking dependencies with rollback

Buffer cache
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈A,#4〉
〈–,#0〉
〈C,#7〉

Disk
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈–,#0〉
〈B,#5〉
〈C,#7〉

• Deleted Created file A and deleted file B
• Now say we decide to write directory block. . .
• Can’t write file name A to disk—has dependee

25 / 35



Breaking dependencies with rollback

Buffer cache
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈A,#4〉
〈–,#0〉
〈C,#7〉

Disk
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈–,#0〉
〈B,#5〉
〈C,#7〉
〈–,#0〉

• Undo file A before writing dir block to disk
I Even though we just wrote it, directory block still dirty

• But now inode block has no dependees
I Can safely write inode block to disk as-is. . .

25 / 35



Breaking dependencies with rollback

Buffer cache
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈A,#4〉
〈–,#0〉
〈C,#7〉

Disk
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈–,#0〉
〈B,#5〉
〈C,#7〉
〈–,#0〉inode #5

• Now inode block clean (same in memory as on disk)
• But have to write directory block a second time. . .

25 / 35



Breaking dependencies with rollback

Buffer cache
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈A,#4〉
〈–,#0〉
〈C,#7〉

Disk
inode block
inode #4
inode #5
inode #6
inode #7

directory block
〈–,#0〉
〈B,#5〉
〈C,#7〉
〈–,#0〉inode #5
〈A,#4〉

• All data stably on disk
• Crash at any point would have been safe

25 / 35



Soft updates

• Structure for each updated field or pointer, contains:
I old value
I new value
I list of updates on which this update depends (dependees)

• Can write blocks in any order
I But must temporarily undo updates with pending dependencies
I Must lock rolled-back version so applications don’t see it
I Choose ordering based on disk arm scheduling

• Some dependencies better handled by postponing in-memory updates
I E.g., when freeing block (e.g., because file truncated), just mark block free in bitmap after

block pointer cleared on disk

26 / 35



Simple example

• Say you create a zero-length file A
• Depender: Directory entry for A

I Can’t be written untill dependees on disk
• Dependees:

I Inode – must be initialized before dir entry written
I Bitmap – must mark inode allocated before dir entry written

• Old value: empty directory entry
• New value: 〈filename A, inode #〉
• Can write directory block to disk any time

I Must substitute old value until inode & bitmap updated on disk
I Once dir block on disk contains A, file fully created
I Crash before A on disk, worst case might leak the inode

27 / 35



Operations requiring soft updates (1)

1. Block allocation
I Must write the disk block, the free map, & a pointer
I Disk block & free map must be written before pointer
I Use Undo/redo on pointer (& possibly file size)

2. Block deallocation
I Must write the cleared pointer & free map
I Just update free map after pointer written to disk
I Or just immediately update free map if pointer not on disk

• Say you quickly append block to file then truncate
I You will know pointer to block not written because of the allocated dependency structure
I So both operations together require no disk I/O!

28 / 35



Operations requiring soft updates (2)

3. Link addition (see simple example)
I Must write the directory entry, inode, & free map (if new inode)
I Inode and free map must be written before dir entry
I Use undo/redo on i# in dir entry (ignore entries w. i# 0)

4. Link removal
I Must write directory entry, inode & free map (if nlinks==0)
I Must decrement nlinks only after pointer cleared
I Clear directory entry immediately
I Decrement in-memory nlinks once pointer written
I If directory entry was never written, decrement immediately

(again will know by presence of dependency structure)

• Note: Quick create/delete requires no disk I/O

29 / 35



Soft update issues

• fsync – sycall to flush file changes to disk
I Must also flush directory entries, parent directories, etc.

• unmount – flush all changes to disk on shutdown
I Some buffers must be flushed multiple times to get clean

• Deleting large directory trees frighteningly fast
I unlink syscall returns even if inode/indir block not cached!
I Dependencies allocated faster than blocks written
I Cap # dependencies allocated to avoid exhausting memory

• Useless write-backs
I Syncer flushes dirty buffers to disk every 30 seconds
I Writing all at once means many dependencies unsatisfied
I Fix syncer to write blocks one at a time
I Fix LRU buffer eviction to know about dependencies

30 / 35



Soft updates fsck

• Split into foreground and background parts
• Foreground must be done before remounting FS

I Need to make sure per-cylinder summary info makes sense
I Recompute free block/inode counts from bitmaps – very fast
I Will leave FS consistent, but might leak disk space

• Background does traditional fsck operations
I Do after mounting to recuperate free space
I Can be using the file system while this is happening
I Must be done in forground after a media failure

• Difference from traditional FFS fsck:
I May have many, many inodes with non-zero link counts
I Don’t stick them all in lost+found (unless media failure)

31 / 35



Outline

1 FFS in more detail

2 Crash recoverability

3 Soft updates

4 Journaling

32 / 35



An alternative: Journaling

• Biggest crash-recovery challenge is inconsistency
I Have one logical operation (e.g., create or delete file)
I Requires multiple separate disk writes
I If only some of them happen, end up with big problems

• Most of these problematic writes are to metadata
• Idea: Use a write-ahead log to journal metadata

I Reserve a portion of disk for a log
I Write any metadata operation first to log, then to disk
I After crash/reboot, re-play the log (efficient)
I May re-do already committed change, but won’t miss anything

33 / 35



Journaling (continued)

• Group multiple operations into one log entry
I E.g., clear directory entry, clear inode, update free map—

either all three will happen after recovery, or none

• Performance advantage:
I Log is consecutive portion of disk
I Multiple operations can be logged at disk b/w
I Safe to consider updates committed when written to log

• Example: delete directory tree
I Record all freed blocks, changed directory entries in log
I Return control to user
I Write out changed directories, bitmaps, etc. in background

(sort for good disk arm scheduling)

34 / 35



Journaling details

• Must find oldest relevant log entry
I Otherwise, redundant and slow to replay whole log

• Use checkpoints
I Once all records up to log entry N have been processed and affected blocks stably committed

to disk. . .
I Record N to disk either in reserved checkpoint location, or in checkpoint log record
I Never need to go back before most recent checkpointed N

• Must also find end of log
I Typically circular buffer; don’t play old records out of order
I Can include begin transaction/end transaction records
I Also typically have checksum in case some sectors bad

35 / 35


	FFS in more detail
	Crash recoverability
	Soft updates
	Journaling

