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Review: Processes and Threads

• A process is an instance of a running program
I Process can have one or more threads

• A thread is an execution context
I Share address space (code, data, heap), open files
I Have their own CPU registers and stack (local variables)

• POSIX Thread APIs
I pthread_create() – Create a new thread
I pthread_exit() – Destroy the current thread
I pthread_join() – Waits for a thread to exit
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https://man.freebsd.org/cgi/man.cgi?query=pthread_create
https://man.freebsd.org/cgi/man.cgi?query=pthread_exit
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Critical Sections

int total = 0;
void add() {

for (int i=0; i<N; i++) {
total++;

}
}

void sub() {
for (int i=0; i<N; i++) {

total--;
}

}

4 / 44



Critical Sections

int total = 0;

void add() {
for (int i=0; i<N; i++) {

movl total, %eax /* %eax = total; */
addl $1, %eax /* %eax++; */
movl %eax, total /* total = %eax; */

}
}

void sub() {
for (int i=0; i<N; i++) {

movl total, %eax /* %eax = total; */
subl $1, %eax /* %eax--; */
movl %eax, total /* total = %eax; */

}
}
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Critical Sections: Schedule 1

Thread #1
------------
movl total, %eax
addl $1, %eax
movl %eax, total

------------

Thread #2
------------

movl total, %eax
subl $1, %eax
movl %eax, total
------------

• Increment completed then decrement
• Result: total = 0
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Critical Sections: Schedule 2

Thread #1
------------
movl total, %eax

addl $1, %eax

movl %eax, total

------------

Thread #2
------------

movl total, %eax

subl $1, %eax

movl %eax, total
------------

• Both load zero, then stores clobber one another
• Result: total = -1
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Critical Sections: Schedule 3

Thread #1
------------
movl total, %eax
addl $1, %eax

movl %eax, total

------------

Thread #2
------------
movl total, %eax
subl $1, %eax
movl %eax, total

------------

• Both load zero, then stores clobber one another
• Result: total = 1
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Need for Synchronization

• Problem: Data races occur without synchronization

• Options:
I Atomic Instructions: instantaneously modify a value
I Locks: prevent concurrent execution

• ... it gets worse!
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Program A

int flag1 = 0, flag2 = 0;

void p1(void *ignored) {
flag1 = 1;
if (!flag2) { critical_section_1(); }

}

void p2(void *ignored) {
flag2 = 1;
if (!flag1) { critical_section_2(); }

}

int main() {
pthread_t tid;
pthread_create(tid, NULL, p1, NULL);
p2(); pthread_join(tid);

}

• Can both critical sections run?
10 / 44



Program B

int data = 0, ready = 0;

void p1(void *ignored) {
data = 2000;
ready = 1;

}

void p2(void *ignored) {
while (!ready)
;

use(data);
}

• Can use be called with value 0?
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Program C

int a = 0, b = 0;

void p1(void *ignored) {
a = 1;

}

void p2(void *ignored) {
if (a == 1)
b = 1;

}

void p3(void *ignored) {
if (b == 1)
use(a);

}

• Can use() be called with value 0?
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Correct answers

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

I It depends on what machine you use
I If a system provides sequential consistency, then answers all No
I But not all hardware provides sequential consistency

• Note: Examples and other slide content from [Adve & Gharachorloo]
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https://rcs.uwaterloo.ca/~ali/readings/shmem-tut.pdf
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Sequential Consistency

Sequential consistency

The result of execution is as if all operations were executed in some sequential order, and the
operations of each processor occurred in the order specified by the program. [Lamport]

• Boils down to two requirements:
1. Maintaining program order on individual processors
2. Ensuring write atomicity

• Without SC, multiple CPUs can be “worse” than preemptive threads
I May see results that cannot occur with any interleaving on 1 CPU

• Why doesn’t all hardware support sequential consistency?
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https://rcs.uwaterloo.ca/~ali/readings/sequential-consistency.pdf


SC thwarts hardware optimizations

• Complicates write buffers
I E.g., read flag[n] before flag[2− n] written through in Program A

• Can’t re-order overlapping write operations
I Concurrent writes to different memory modules
I Coalescing writes to same cache line

• Complicates non-blocking reads
I E.g., speculatively prefetch data in Program B

• Makes cache coherence more expensive
I Must delay write completion until invalidation/update (Program B)
I Can’t allow overlapping updates if no globally visible order (Program C)
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SC thwarts compiler optimizations

• Code motion
• Caching value in register

I Collapse multiple loads/stores of same address into one operation

• Common subexpression elimination
I Could cause memory location to be read fewer times

• Loop blocking
I Re-arrange loops for better cache performance

• Software pipelining
I Move instructions across iterations of a loop to overlap instruction latency with branch cost
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x86 consistency [Intel SDM 3A, §8.2]

• x86 supports multiple consistency/caching models
I Memory Type Range Registers (MTRR) specify consistency for ranges of physical memory

(e.g., frame buffer)
I Page Attribute Table (PAT) allows control for each 4K page

• Choices include:
I WB: Write-back caching (the default)
I WT: Write-through caching (all writes go to memory)
I UC: Uncacheable (for device memory)
I WC: Write-combining – weak consistency & no caching

(used for frame buffers, when sending a lot of data to GPU)
• Some instructions have weaker consistency

I String instructions (written cache-lines can be re-ordered)
I Special “non-temporal” store instructions (movnt*) that bypass cache and can be re-ordered

with respect to other writes
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http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf


x86 WB consistency

• Old x86s (e.g, 486, Pentium 1) had almost SC
I Exception: A read could finish before an earlier write to a different location
I Which of Programs A, B, C might be affected?

• Newer x86s also let a CPU read its own writes early (store-to-load forwarding)
volatile int flag1 = 0, flag2 = 0;
int p1 (void) int p2 (void)
{ {
register int f, g; register int f, g;
flag1 = 1; flag2 = 1;
f = flag1; f = flag2;
g = flag2; g = flag1;
return 2*f + g; return 2*f + g;

} }

I E.g., both p1 and p2 can return 2:
I Older CPUs would wait at “f = …” until store complete
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x86 atomicity

• lock – prefix makes a memory instruction atomic
I Usually locks bus for duration of instruction (expensive!)
I Can avoid locking if memory already exclusively cached
I All lock instructions totally ordered
I Other memory instructions cannot be re-ordered w. locked ones

• xchg – Exchange instruction is always locked (without the prefix)
• cmpxchg – Compare and exchange is not automatically locked
• Special fence instructions can prevent re-ordering

I lfence – can’t be reordered w. reads (or later writes)
I sfence – can’t be reordered w. writes

(e.g., use after non-temporal stores, before setting a ready flag)
I mfence – can’t be reordered w. reads or writes
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Assuming sequential consistency

• Often we reason about concurrent code assuming S.C.
• But for low-level code, know your memory model!

I May need to sprinkle barriers instructions into your source

• For most code, avoid depending on memory model
I Idea: If you obey certain rules (discussed later)

. . . system behavior should be indistinguishable from S.C.

• Let’s for now say we have sequential consistency
• Example concurrent code: Producer/Consumer

I buffer stores BUFFER_SIZE items
I count is number of used slots
I out is next empty buffer slot to fill (if any)
I in is oldest filled slot to consume (if any)
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void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)

/* do nothing */;
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}
}

void consumer (void *ignored) {
for (;;) {

while (count == 0)
/* do nothing */;

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed);

}
}

• What can go wrong in above threads (even w. S.C.)?
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Data races

• count may have wrong value
• Possible implementation of count++ and count--

register←count register←count
register←register + 1 register←register − 1
count←register count←register

• Possible execution (count one less than correct):
register←count
register←register + 1
register←count
register←register − 1
count←register
count←register
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Data races (continued)

• What about a single-instruction add?
I E.g., i386 allows single instruction addl $1, count
I So implement count++/-- with one instruction
I Now are we safe?

• Not atomic on multiprocessor!
I Will experience exact same race condition
I Can potentially make atomic with lock prefix
I But lock very expensive
I Compiler won’t generate it, assumes you don’t want penalty

• Need solution to critical section problem
I Place count++ and count-- in critical section
I Protect critical sections from concurrent execution
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Desired properties of solution

• Mutual Exclusion
I Only one thread can be in critical section at a time

• Progress
I Say no process currently in critical section (C.S.)
I One of the processes trying to enter will eventually get in

• Bounded waiting
I Once a thread T starts trying to enter the critical section, there is a bound on the number of

times other threads get in

• Note progress vs. bounded waiting
I If no thread can enter C.S., don’t have progress
I If thread A waiting to enter C.S. while B repeatedly leaves and re-enters C.S. ad infinitum,

don’t have bounded waiting
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Mutexes

• Thread packages typically provide mutexes:

void mutex_init(mutex_t *m, ...);
void mutex_lock(mutex_t *m);
bool mutex_trylock(mutex_t *m);
void mutex_unlock(mutex_t *m);

• Only one thread acuires m at a time, others wait
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Thread API contract

• All global data should be protected by a mutex!
I Global = accessed by more than one thread, at least one write
I Exception is initialization, before exposed to other threads
I This is the responsibility of the application writer

Compiler/Runtime Contract (C, Java, Go, etc.)

Assuming no data races the program behaves sequentially consistent.

• If you use mutexes properly, behavior should be indistinguishable from Sequential
Consistency
I Responsibility of the threads package & compiler
I Mutex is broken if you use properly and don’t see S.C.

• OS kernels also need synchronization
I Some mechanisms look like mutexes
I But interrupts complicate things (incompatible w. mutexes)
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PThread Mutex API

• Function names in this lecture all based on pthreads
• int pthread_mutex_init(pthread_mutex_t *m,

pthread_mutexattr_t attr)
I Initialize a mutex

• int pthread_mutex_destroy(pthread_mutex_t *m)
I Destroy a mutex

• int pthread_mutex_lock(pthread_mutex_t *m)
I Acquire a mutex

• int pthread_mutex_unlock(pthread_mutex_t *m)
I Release a mutex

• int pthread_mutex_trylock(pthread_mutex_t *m)
I Attempt to acquire a mutex
I Return 0 if successful, otherwise EBUSY
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https://man.freebsd.org/cgi/man.cgi?query=pthread_mutex_init
https://man.freebsd.org/cgi/man.cgi?query=pthread_mutex_destroy
https://man.freebsd.org/cgi/man.cgi?query=pthread_mutex_lock
https://man.freebsd.org/cgi/man.cgi?query=pthread_mutex_unlock
https://man.freebsd.org/cgi/man.cgi?query=pthread_mutex_trylock


Improved producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {

mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex);

}
} 30 / 44



Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0) {

mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}
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Condition variables

• Busy-waiting in application is a bad idea
I Thread consumes CPU even when can’t make progress
I Unnecessarily slows other threads and processes

• Better to inform scheduler of which threads can run
• Typically done with condition variables
• int pthread_cond_init(pthread_cond_t *, ...);

I Initialize with specific attributes
• int pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);

I Atomically unlock m and sleep until c signaled
I Then re-acquire m and resume executing

• int pthread_cond_signal(pthread_cond_t *c);
int pthread_cond_broadcast(pthread_cond_t *c);
I Wake one/all threads waiting on c
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https://man.freebsd.org/cgi/man.cgi?query=pthread_cond_init
https://man.freebsd.org/cgi/man.cgi?query=pthread_cond_wait
https://man.freebsd.org/cgi/man.cgi?query=pthread_cond_signal
https://man.freebsd.org/cgi/man.cgi?query=pthread_cond_broadcast


Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock(&mutex);
while (count == BUFFER_SIZE)

cond_wait(&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
cond_signal(&nonempty);
mutex_unlock(&mutex);

}
} 33 / 44



Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0)

cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}
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Re-check conditions

• Always re-check condition on wake-up
while (count == 0) /* not if */

cond_wait (&nonempty, &mutex);

• Else, breaks w. spurious wakeup or two consumers
I Start with empty buffer, then:

C1 C2 P
cond_wait (…); mutex_lock (…);

...
count++;
cond_signal (…);

mutex_lock (…); mutex_unlock (…);
if (count == 0)...
use buffer[out] . . .
count--;
mutex_unlock (…);

use buffer[out] . . . ←− No items in buffer
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Condition variables (continued)

• Why must cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}

• Can end up stuck waiting when bad interleaving
PRODUCER CONSUMER
while (count == BUFFER_SIZE)

mutex_unlock (&mutex);
mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

cond_wait (&nonfull);
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Monitors [Hoar]

• Programming language construct (e.g. Java, C#)
I Possibly less error prone than raw mutexes, but less flexible too
I A class where only one procedure executes at a time
I Often provides CV like functionality

public class Statistics {
private int counter;
public synchronized int get() { return counter; }
public synchronized void inc() { counter++; }

}

• Can implement mutex w. monitor or vice versa
I But monitor alone doesn’t give you condition variables
I Need some other way to interact w. scheduler
I Use conditions, which are essentially condition variables
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https://rcs.uwaterloo.ca/~ali/readings/monitors.pdf


Monitor implementation

• Queue of threads waiting to get in
• Java provides obj.wait(), obj.notify() and obj.notifyAll()
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Semaphores [Dijkstra]

• A Semaphore is initialized with an integer N
I int sem_init(sem_t *s, ..., unsigned int n);

• Provides two functions:
I sem_wait(sem_t *s) (originally called P)
I sem_post(sem_t *s) (originally called V )

• Operation: sem_wait will return only N more times than sem_post called
I Example: If N == 1, then semaphore is a mutex with sem_wait as lock and

sem_post as unlock

• Semaphores give elegant solutions to some problems
• Linux primarily uses semaphores for sleeping locks

I sema_init, down_interruptible, up, . . .
I Also reader-writer semaphores, rw_semaphore [Love]
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http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://man.freebsd.org/cgi/man.cgi?query=sem_wait
https://man.freebsd.org/cgi/man.cgi?query=sem_post
http://www.linuxjournal.com/article/5833


Semaphore producer/consumer

• Initialize full to 0 (block consumer when buffer empty)
• Initialize empty to N (block producer when queue full)

void producer(void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
sem_wait(&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_post(&full);

}
}
void consumer(void *ignored) {

for (;;) {
sem_wait(&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_post(&empty);
consume_item(nextConsumed);

}
}
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Benign races

• Sometimes “cheating” buys efficiency. . .
• Care more about speed than accuracy

hits++; // each time someone accesses web site

• Know you can get away with race
if (!initialized) {
lock (m);
if (!initialized) { initialize (); initialized = 1; }
unlock (m);

}
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Detecting data races

• Static methods (hard)
• Debugging painful—race might occur rarely
• Instrumentation—modify program to trap memory accesses
• Lockset algorithm [Eraser] particularly effective:

I For each global memory location, keep a “lockset”
I On each access, remove any locks not currently held
I If lockset becomes empty, abort: No mutex protects data
I Catches potential races even if they don’t occur

• Clang’s ThreadSanitizer uses a happens before algorithm
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https://rcs.uwaterloo.ca/~ali/readings/eraser.pdf
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