
CS350: Operating Systems

Lecture 11: I/O and Disks

Ali Mashtizadeh

University of Waterloo

1 / 32

Outline

1 Computer Bus and Device Architecture

2 Device Drivers

3 Disk Drives

4 Flash Storage

2 / 32

Memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

• CPU accesses physical memory over a bus
• Devices access memory over I/O bus with DMA
• Devices can appear to be a region of memory

3 / 32

Realistic PC architecture

*Newest CPUs don’t have North Bridge;

Programable
Interrupt

Controller
bus

I/O
APIC

CPU

Main
memory

North
bus
side
front-

South
Bridge

bus
ISA

CPU

USB

bus
AGP

PCI
IRQsbus

PCI

Bridge*

memory controller integrated into CPU

Advanced

4 / 32

What is memory?

• SRAM – Static RAM
I Like two NOT gates circularly wired input-to-output
I 4–6 transistors per bit, actively holds its value
I Very fast, used to cache slower memory

• DRAM – Dynamic RAM
I A capacitor + gate, holds charge to indicate bit value
I 1 transistor per bit – extremely dense storage
I Charge leaks—need slow comparator to decide if bit 1 or 0
I Must re-write charge after reading, and periodically refresh

• VRAM – “Video RAM”
I Dual ported, can write while someone else reads

5 / 32

What is I/O bus? E.g., PCI

6 / 32

Outline

1 Computer Bus and Device Architecture

2 Device Drivers

3 Disk Drives

4 Flash Storage

7 / 32

Communicating with a device

• Memory-mapped device registers
I Certain physical addresses correspond to device registers
I Load/store gets status/sends instructions – not real memory

• Device memory – device may have memory OS can write to directly on other side of I/O
bus

• Special I/O instructions
I Some CPUs (e.g., x86) have special I/O instructions
I Like load & store, but asserts special I/O pin on CPU
I OS can allow user-mode access to I/O ports with finer granularity than page

• DMA – place instructions to card in main memory
I Typically then need to “poke” card by writing to register
I Overlaps unrelated computation with moving data over (typically slower than memory) I/O bus

8 / 32

Example: parallel port (LPT1)

• Simple hardware has three control registers:
D7 D6 D5 D4 D3 D2 D1 D0

read/write data register (port 0x378)

BSY ACK PAP OFON ERR – – –
read-only status register (port 0x379)

– – – IRQ DSL INI ALF STR
read/write control register (port 0x37a)

• Every bit except IRQ corresponds to a pin on 25-pin connector:

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

OFON
PAP
BSY
ACK

Data Out

STR

7
6
5
4
3
2
1
0

Ground

DSL
INI

ERR
ALF

[Wikipedia][Messmer] 9 / 32

Writing bit to parallel port [osdev]

void
sendbyte(uint8_t byte)
{
/* Wait until BSY bit is 1. */
while ((inb (0x379) & 0x80) == 0)
delay();

/* Put the byte we wish to send on pins D7-0. */
outb(0x378, byte);

/*
* Pulse STR (strobe) line to inform the printer
* that a byte is available
*/
uint8_t ctrlval = inb(0x37a);
outb(0x37a, ctrlval | 0x01);
delay();
outb(0x37a, ctrlval);

} 10 / 32

http://wiki.osdev.org/Parallel_port

Memory-mapped IO

• in/out instructions slow and clunky
I Instruction format restricts what registers you can use
I Only allows 216 different port numbers
I Per-range access control turns out not to be useful

(any port access allows you to disable all interrupts)

• Devices can achieve same effect with physical addresses, e.g.:
volatile int32_t *device_control = (int32_t *)0xc00c0100;
device_control = 0x80; / Write to control reg */
int32_t status = *device_control; /* Read status reg */

I OS must map physical to virtual addresses, ensure non-cachable
• Assign physical addresses at boot to avoid conflicts. PCI:

I Slow/clunky way to access configuration registers on device
I Use that to assign ranges of physical addresses to device

11 / 32

DMA buffers

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500

…

• Idea: only use CPU to transfer control requests, not data
• Include list of buffer locations in main memory

I Device reads list and accesses buffers through DMA
I Descriptions sometimes allow for scatter/gather I/O 12 / 32

Example: Network Interface Card

H
o

st
 I

/O
 b

u
s

Adaptor

Network link
Bus

interface
Link

interface

• Link interface talks to wire/fiber/antenna
I Typically does framing, link-layer CRC

• FIFOs on card provide small amount of buffering
• Bus interface logic uses DMA to move packets to and from buffers in main memory

13 / 32

Example: IDE disk read w. DMA

14 / 32

Driver architecture

• Device driver provides several entry points to kernel
I Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?
I E.g., Need to know when transmit buffers free or packets arrive
I Need to know when disk request complete

• One approach: Polling
I Sent a packet? Loop asking card when buffer is free
I Waiting to receive? Keep asking card if it has packet
I Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?

I Can’t use CPU for anything else while polling
I Or schedule poll in future and do something else, but then high latency to receive packet or

process disk block

15 / 32

Driver architecture

• Device driver provides several entry points to kernel
I Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?
I E.g., Need to know when transmit buffers free or packets arrive
I Need to know when disk request complete

• One approach: Polling
I Sent a packet? Loop asking card when buffer is free
I Waiting to receive? Keep asking card if it has packet
I Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?
I Can’t use CPU for anything else while polling
I Or schedule poll in future and do something else, but then high latency to receive packet or

process disk block
15 / 32

Interrupt driven devices

• Instead, ask card to interrupt CPU on events
I Interrupt handler runs at high priority
I Asks card what happened (xmit buffer free, new packet)
I This is what most general-purpose OSes do

• Bad under high network packet arrival rate
I Packets can arrive faster than OS can process them
I Interrupts are very expensive (context switch)
I Interrupt handlers have high priority
I In worst case, can spend 100% of time in interrupt handler and never make any progress –

receive livelock
I Best: Adaptive switching between interrupts and polling

• Very good for disk requests
• Rest of today: Disks

16 / 32

Outline

1 Computer Bus and Device Architecture

2 Device Drivers

3 Disk Drives

4 Flash Storage

17 / 32

Anatomy of a disk [Ruemmler]

• Stack of magnetic platters
I Rotate together on a central spindle @3,600-15,000 RPM
I Drive speed drifts slowly over time
I Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly
I Arms rotate around pivot, all move together
I Pivot offers some resistance to linear shocks
I Arms contain disk heads–one for each recording surface
I Heads read and write data to platters

18 / 32

https://rcs.uwaterloo.ca/~ali/sched/readings/diskmodel.pdf

Disk

19 / 32

Disk

19 / 32

Disk

19 / 32

Storage on a magnetic platter

• Platters divided into concentric tracks
• A stack of tracks of fixed radius is a cylinder
• Heads record and sense data along cylinders

I Significant fractions of encoded stream for error correction

• Generally only one head active at a time
I Disks usually have one set of read-write circuitry
I Must worry about cross-talk between channels
I Hard to keep multiple heads exactly aligned

20 / 32

Cylinders, tracks, & sectors

21 / 32

Disk positioning system

• Position specified by <Cyl., Head, Sector>
• Each track is specified by the <Cyl.,Head> tuple
• Move head to specific track and keep it there

I Resist physical shocks, imperfect tracks, etc.
• A seek consists of up to four phases:

I speedup–accelerate arm to max speed or half way point
I coast–at max speed (for long seeks)
I slowdown–stops arm near destination
I settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)
• Short (200–400 cyl.) seeks dominated by speedup

I Accelerations of ∼40g
22 / 32

Seek details

• Head switches comparable to short seeks
I May also require head adjustment
I Settles take longer for writes than for reads – Why?

If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power
I Maps seek distance to power and time
I Disk interpolates over entries in table
I Table set by periodic “thermal recalibration”
I But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things
I Time to seek 1/3 disk, 1/3 time to seek whole disk

23 / 32

Seek details

• Head switches comparable to short seeks
I May also require head adjustment
I Settles take longer for writes than for reads

If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power
I Maps seek distance to power and time
I Disk interpolates over entries in table
I Table set by periodic “thermal recalibration”
I But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things
I Time to seek 1/3 disk, 1/3 time to seek whole disk

23 / 32

Transfer Time

Transfer Time = Seek Time + Rotational Delay + DataSize
MIN(Bus Speed ,Max Read Speed)

• Max Read Speed is determined by how fast we read sectors off the platter:

Max Read Speed = RPM
60sec/min × Bytes per Sector × Sectors per Track

• Rotational Delay is how long it takes on average to rotate the platter into position
(i.e. half a rotation of the platter).

Rotational Delay = 1
2 × 60sec/min

RPM

24 / 32

Sectors – LBA Addressing

• Modern disk interfaces present linear array of sectors
I Generally 512 bytes, written atomically (even if power failure)

• Disk maps logical sector #s to physical sectors
I Zoning–puts more sectors on longer tracks
I Track skewing–sector 0 pos. varies by track for sequential accesses
I Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping
I Larger logical sector # difference means larger seek
I Highly non-linear relationship (and depends on zone)
I OS has no info on rotational positions
I Can empirically build table to estimate times

25 / 32

Disk controller interface

• Disks connected by bus (e.g., IDE/ATA, SATA, SCSI, SAS)
I Multiple devices may contend for bus

• Advanced interfaces support:
• Command queuing: Give disk multiple requests

I Disk can schedule them using rotational information
I OS can limit IO reordering

• Disk cache used for read-ahead
I Otherwise, sequential reads would incur whole revolution
I Cross track boundaries? Can’t stop a head-switch

• Write caching
I But data not stable—not suitable for all requests

26 / 32

Disk performance

• Placement & ordering of requests a huge issue
I Sequential I/O much, much faster than random
I Long seeks much slower than short ones
I Power might fail any time, leaving inconsistent state

• Must be careful about order for crashes
I More on this in next two lectures

• Try to achieve contiguous accesses where possible
I E.g., make big chunks of individual files contiguous

• Try to order requests to minimize seek times
I OS can only do this if it has a multiple requests to order
I Requires disk I/O concurrency
I High-performance apps try to maximize I/O concurrency

• Next: How to schedule concurrent requests
27 / 32

Outline

1 Computer Bus and Device Architecture

2 Device Drivers

3 Disk Drives

4 Flash Storage

28 / 32

Flash memory

• Today, people increasingly using flash memory
• Completely solid state (no moving parts)

I Remembers data by storing charge
I Lower power consumption and heat
I No mechanical seek times to worry about

• Limited # overwrites possible
I Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
I Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical

block don’t wear out physical block
I FTL can seriously impact performance
I In particular, random writes very expensive [Birrell]

• Limited durability
I Charge wears out over time
I Turn off device for a year, you can easily lose data

29 / 32

http://research.microsoft.com/pubs/63681/TR-2005-176.pdf

Types of flash memory

• NAND flash (most prevalent for storage)
I Higher density (most used for storage)
I Faster erase and write
I More errors internally, so need error correction

• NOR flash
I Faster reads in smaller data units
I Can execute code straight out of NOR flash
I Significantly slower erases

• Single-level cell (SLC) vs. Multi-level cell (MLC)
I MLC encodes multiple bits in voltage level
I MLC slower to write than SLC

30 / 32

NAND Flash Overview

• Flash device has 2112-byte pages
I 2048 bytes of data + 64 bytes metadata & ECC

• Blocks contain 64 (SLC) or 128 (MLC) pages
• Blocks divided into 2–4 planes

I All planes contend for same package pins
I But can access their blocks in parallel to overlap latencies

• Can read one page at a time
I Takes 25 µs + time to get data off chip

• Must erase whole block before programming
I Erase sets all bits to 1—very expensive (2 msec)
I Programming pre-erased block requires moving data to internal buffer, then 200 (SLC)–800

(MLC) µs

31 / 32

Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8

Page Size (Bytes) 2048+32 2048+64
Block Size (Pages) 64 128
Read Latency (µs) 25 25
Write Latency (µs) 200 800
Erase Latency (µs) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0

32 / 32

http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf

	Computer Bus and Device Architecture
	Device Drivers
	Disk Drives
	Flash Storage

