
CS350: Operating Systems

Lecture 10: Scheduling

Ali Mashtizadeh

University of Waterloo

1 / 32



CPU Scheduling

• The scheduling problem:
I Have K jobs ready to run
I Have N ≥ 1 CPUs
I Which jobs to assign to which CPU(s)

• When do we make decision?
2 / 32



CPU Scheduling

new

ready

waiting

running

terminated

 

I/O or event completion I/O or event wait
scheduler dispatch

interrupt exitadmitted

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

• Non-preemptive schedules use 1 & 4 only
• Preemptive schedulers run at all four points

3 / 32



Scheduling criteria

• What goals should we have for a scheduling algorithm?

• Throughput – # of procs that complete per unit time
I Higher is better

• Turnaround time – time for each proc to complete
I Lower is better

• Response time – time from request to first response
(e.g., key press to character echo, not launch to exit)
I Lower is better

• Above criteria are affected by secondary criteria
I CPU utilization – fraction of time CPU doing productive work
I Waiting time – time each proc waits in ready queue

4 / 32



Scheduling criteria

• What goals should we have for a scheduling algorithm?
• Throughput – # of procs that complete per unit time

I Higher is better

• Turnaround time – time for each proc to complete
I Lower is better

• Response time – time from request to first response
(e.g., key press to character echo, not launch to exit)
I Lower is better

• Above criteria are affected by secondary criteria
I CPU utilization – fraction of time CPU doing productive work
I Waiting time – time each proc waits in ready queue

4 / 32



Example: FCFS Scheduling

• Run jobs in order that they arrive
I Called “First-come first-served” (FCFS)
I E.g.., Say P1 needs 24 sec, while P2 and P3 need 3.
I Say P2, P3 arrived immediately after P1, get:

• Dirt simple to implement—how good is it?
• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

I Average TT: (24 + 27 + 30)/3 = 27

• Can we do better?
5 / 32



FCFS continued

• Suppose we scheduled P2, P3, then P1

I Would get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround time: P1 : 30, P2 : 3, P3 : 6

I Average TT: (30 + 3 + 6)/3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT
I Minimizing waiting time can improve RT and TT

• What about throughput?
6 / 32



Bursts of computation & I/O

• Jobs contain I/O and computation
I Bursts of computation
I Then must wait for I/O

• To Maximize throughput
I Must maximize CPU utilization
I Also maximize I/O device utilization

• How to do?
I Overlap I/O & computation from

multiple jobs
I Means response time very important for

I/O-intensive jobs: I/O device will be idle
until job gets small amount of CPU to
issue next I/O request

7 / 32



Histogram of CPU-burst times

• What does this mean for FCFS?
8 / 32



FCFS Convoy effect

• CPU-bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)
I long periods where no I/O requests issued, and CPU held
I Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
I CPU-bound job runs (I/O devices idle)
I CPU-bound job blocks
I I/O-bound job(s) run, quickly block on I/O
I CPU-bound job runs again
I I/O completes
I CPU-bound job continues while I/O devices idle

• Simple hack: run process whose I/O completed?
I What is a potential problem?

9 / 32



SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
I Schedule the job whose next CPU burst is the shortest

• Two schemes:
I Non-preemptive – once CPU given to the process it cannot be preempted until completes its

CPU burst
I Preemptive – if a new process arrives with CPU burst length less than remaining time of

current executing process, preempt (Known as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

I Gives minimum average waiting time for a given set of processes

10 / 32



SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
I Schedule the job whose next CPU burst is the shortest

• Two schemes:
I Non-preemptive – once CPU given to the process it cannot be preempted until completes its

CPU burst
I Preemptive – if a new process arrives with CPU burst length less than remaining time of

current executing process, preempt (Known as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?
I Gives minimum average waiting time for a given set of processes

10 / 32



Examples

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• Non-preemptive

• Preemptive

• Drawbacks?
11 / 32



SJF limitations

• Doesn’t always minimize average turnaround time
I Only minimizes waiting time, which minimizes response time
I Example where turnaround time might be suboptimal?

I Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future

12 / 32



SJF limitations

• Doesn’t always minimize average turnaround time
I Only minimizes waiting time, which minimizes response time
I Example where turnaround time might be suboptimal?
I Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future

12 / 32



Round robin (RR) scheduling

• Solution to fairness and starvation
I Preempt job after some time slice or quantum
I When preempted, move to back of FIFO queue
I (Most systems do some flavor of this)

• Advantages:
I Fair allocation of CPU across jobs
I Low average waiting time when job lengths vary
I Good for responsiveness if small number of jobs

• Disadvantages?
13 / 32



RR disadvantages

• Varying sized jobs are good . . . what about same-sized jobs?
• Assume 2 jobs of time=100 each:

• Even if context switches were free. . .
I What would average completion time be with RR?

199.5

I How does that compare to FCFS?

150

14 / 32



RR disadvantages

• Varying sized jobs are good . . . what about same-sized jobs?
• Assume 2 jobs of time=100 each:

• Even if context switches were free. . .
I What would average completion time be with RR? 199.5
I How does that compare to FCFS? 150

14 / 32



Context switch costs

• What is the cost of a context switch?

• Brute CPU time cost in kernel
I Save and restore resisters, etc.
I Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

15 / 32



Context switch costs

• What is the cost of a context switch?
• Brute CPU time cost in kernel

I Save and restore resisters, etc.
I Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

15 / 32



Time quantum

• How to pick quantum?
I Want much larger than context switch cost
I Majority of bursts should be less than quantum
I But not so large system reverts to FCFS

• Typical values: 10–100 msec
16 / 32



Turnaround time vs. quantum

17 / 32



Priority scheduling

• Associate a numeric priority with each process
I E.g., smaller number means higher priority (Unix/BSD)

• Give CPU to the process with highest priority
I Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is the predicted next CPU burst time
• Starvation – low priority processes may never execute
• Solution?

I Aging: increase a process’s priority as it waits

18 / 32



Priority scheduling

• Associate a numeric priority with each process
I E.g., smaller number means higher priority (Unix/BSD)

• Give CPU to the process with highest priority
I Can be done preemptively or non-preemptively

• Note SJF is a priority scheduling where priority is the predicted next CPU burst time
• Starvation – low priority processes may never execute
• Solution?

I Aging: increase a process’s priority as it waits

18 / 32



Outline

1 Multilevel feedback queues (BSD 4.4)

2 Borrowed Virtual Time Scheduler

19 / 32



Multilevel feedback queues (BSD)

• Every runnable process on one of 32 run queues
I Kernel runs process on highest-priority non-empty queue
I Round-robins among processes on same queue

• Process priorities dynamically computed
I Processes moved between queues to reflect priority changes
I If a process gets higher priority than running process, run it

• Idea: Favor interactive jobs that use less CPU 20 / 32



Process priority

• p_nice – user-settable weighting factor
• p_estcpu – per-process estimated CPU usage

I Incremented whenever timer interrupt found proc. running
I Decayed every second while process runnable

p_estcpu←
(

2 · load
2 · load+ 1

)
p_estcpu+ p_nice

I Load is sampled average of length of run queue plus short-term sleep queue over last minute

• Run queue determined by p_usrpri/4

p_usrpri← 50 +

(
p_estcpu

4

)
+ 2 · p_nice

(value clipped if over 127)
21 / 32



Sleeping process increases priority

• p_estcpu not updated while asleep
I Instead p_slptime keeps count of sleep time

• When process becomes runnable

p_estcpu←
(

2 · load
2 · load+ 1

)p_slptime
× p_estcpu

I Approximates decay ignoring nice and past loads

• Previous description based on The Design and Implementation of the 4.4BSD Operating
System by McKusick

22 / 32



Multiprocessor scheduling issues

• Must decide on more than which processes to run
I Must decide on which CPU to run which process

• Moving between CPUs has costs
I More cache misses, depending on arch more TLB misses too

• Affinity scheduling—try to keep threads on same CPU

I But also prevent load imbalances
I Do cost-benefit analysis when deciding to migrate

23 / 32



Outline

1 Multilevel feedback queues (BSD 4.4)

2 Borrowed Virtual Time Scheduler

24 / 32



Borrowed Virtual Time Scheduler [Duda]

• Many modern schedulers employ notion of virtual time
I Idea: Equalize virtual CPU time consumed by different processes
I Examples: Linux CFS

• Idea: Run process w. lowest effective virtual time
I Ai – actual virtual time consumed by process i
I effective virtual time Ei = Ai − (warpi ? Wi : 0)

• Supports real-time applications:
I Warp factor allows borrowing against future CPU time
I Allows an application to temporarily violate fairness

25 / 32

https://rcs.uwaterloo.ca/~ali/readings/bvt.pdf


Process weights

• Each process i ’s faction of CPU determined by weight wi
I i should get wi/

∑
j

wj faction of CPU

I So wi is seconds per virtual time tick while i has CPU

• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
I Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
I Lots of context switches, not so good for performance

• Add in context switch allowance, C
I Only switch from i to j if Ej ≤ Ei − C/wi
I C is wall-clock time (>> context switch cost), so must divide by wi
I Ignore C if j just became runable. . . why?

26 / 32



Process weights

• Each process i ’s faction of CPU determined by weight wi
I i should get wi/

∑
j

wj faction of CPU

I So wi is seconds per virtual time tick while i has CPU

• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
I Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
I Lots of context switches, not so good for performance

• Add in context switch allowance, C
I Only switch from i to j if Ej ≤ Ei − C/wi
I C is wall-clock time (>> context switch cost), so must divide by wi
I Ignore C if j just became runable to avoid affecting response time

26 / 32



BVT example

0

20

real time

v
ir
tu

a
l 
ti
m

e

40

60

80

100

120

140

160

180

0 3 6 9 12 15 18 21 24 27

bigsim
gcc

• gcc has weight 2, bigsim weight 1, C = 2, no I/O
I bigsim consumes virtual time at twice the rate of gcc

27 / 32



Sleep/wakeup

• Must lower priority (increase Ai) after wakeup
I Otherwise process with very low Ai would starve everyone

• Bound lag with Scheduler Virtual Time (SVT)
I SVT is minimum Aj for all runnable threads j
I When waking i from voluntary sleep, set Ai ←max(Ai , SVT )

• Note voluntary/involuntary sleep distinction
I E.g., Don’t reset Aj to SVT after page fault
I Faulting thread needs a chance to catch up
I But do set Ai ←max(Ai , SVT ) after socket read

• Note: Even with SVT Ai can never decrease
I After short sleep, might have Ai > SVT, so max(Ai , SVT ) = Ai
I i never gets more than its fair share of CPU in long run

28 / 32



gcc wakes up after I/O

0

50

100

150

200

250

300

350

400

0 15 30

gcc
bigsim

• gcc’s Ai gets reset to SVT on wakeup
I Otherwise, would be at lower (blue) line and starve bigsim

29 / 32



Real-time threads

• Also want to support soft real-time threads
I E.g., mpeg player must run every 10 clock ticks

• Recall Ei = Ai − (warpi ? Wi : 0)

I Wi is warp factor – gives thread precedence
I Just give mpeg player i large Wi factor
I Will get CPU whenever it is runable
I But long term CPU share won’t exceed wi/

∑
j

wj

• Note Wi only matters when warpi is true
I Can set warpi with a syscall, or have it set in signal handler
I Also gets cleared if i keeps using CPU for Li time
I Li limit gets reset every Ui time
I Li = 0 means no limit – okay for small Wi value

30 / 32



Running warped

gcc

-60

-40

-20

0

20

40

60

80

100

120

0 5 10 15 20 25

bigsim
mpeg

• mpeg player runs with −50 warp value
I Always gets CPU when needed, never misses a frame

31 / 32



Warped thread hogging CPU

-60

-40

-20

0

20

40

60

80

100

120

0 5 10 15 20 25

gcc
bigsim
mpeg

• mpeg goes into tight loop at time 5
• Exceeds Li at time 10, so warpi ← false

32 / 32


	Multilevel feedback queues (BSD 4.4)
	Borrowed Virtual Time Scheduler

