
CS350: Operating Systems

Lecture 5: Synchronization

Ali Mashtizadeh

University of Waterloo

1 / 44



Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

2 / 44



Motivation

T (n) = T (1)

(
B +

1

n (1− B)

)
• Amdahl’s law

I T (1): the time one core takes to complete the task
I B: the fraction of the job that must be serial
I n: the number of cores

• Suppose n were infinity!
• Amdahl’s law places an ultimate limit on parallel speedup
• Problem: synchronization increases serial section size

• Scalable Commutativity Rule: “Whenever interface operations commute, they can be
implemented in a way that scales” [Clements]

3 / 44

https://rcs.uwaterloo.ca/~ali/readings/clements-sc.pdf


Locking Basics

pthread_mutex_t m;

pthread_mutex_lock(&m);
cnt = cnt + 1; /* critical section */
pthread_mutex_unlock(&m);

• Only one thread can hold a lock at a time
• Makes critical section atomic
• When do you need a lock?

I Anytime two or more threads touch data and at least one writes

• Rule: Never touch data unless you hold the right lock

4 / 44



Fine-grained Locking

struct list_head *hash_tbl[1024];

/* Coarse-grained Locking */
mutex_t m;
mutex_lock(&m);
struct list_head *pos = hash_tbl[hash(key)];
/* walk list and find entry */
mutex_unlock(&m);

/* Fine-grained Locking */
mutex_t bucket[1024];
int index = hash(key);
mutex_lock(&bucket[index]);
struct list_head *pos = hash_tbl[index];
/* walk list and find entry */
mutex_unlock(&bucket[index]);

• Which of these is better?

5 / 44



Memory reordering danger

• Suppose no sequential consistency & don’t compensate
• Hardware could violate program order

Program order on CPU #1 View on CPU #2
read/write: v->lock = 1; v->lock = 1;

read: register = v->val;
write: v->val = register + 1;
write: v->lock = 0; v->lock = 0;

/* danger */
v->val = register + 1;

• If atomic_inc called at /* danger */, bad val ensues!

6 / 44



Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
/* danger */
v->lock = 0;

}
• Must ensure all CPUs see the following:

1. v->lock was set before v->val was read and written
2. v->lock was cleared after v->val was written

• How does #1 get assured on x86?
I Recall test_and_set uses xchgl %eax,(%edx)

I xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?

I Might need fence instruction after, e.g., non-temporal stores

7 / 44



Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
/* danger */
v->lock = 0;

}
• Must ensure all CPUs see the following:

1. v->lock was set before v->val was read and written
2. v->lock was cleared after v->val was written

• How does #1 get assured on x86?
I Recall test_and_set uses xchgl %eax,(%edx)
I xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?

I Might need fence instruction after, e.g., non-temporal stores

7 / 44



Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
asm volatile ("sfence" ::: "memory");
v->lock = 0;

}
• Must ensure all CPUs see the following:

1. v->lock was set before v->val was read and written
2. v->lock was cleared after v->val was written

• How does #1 get assured on x86?
I Recall test_and_set uses xchgl %eax,(%edx)
I xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?
I Might need fence instruction after, e.g., non-temporal stores

7 / 44



Spinlocks

void Spinlock_Lock(Spinlock *lock)
{

/* Disable Interrupts */
Critical_Enter();

while (atomic_swap_uint64(&lock->lock, 1) == 1)
/* Spin! */;

lock->cpu = CPU();
}
void Spinlock_Unlock(Spinlock *lock)
{

ASSERT(lock->cpu == CPU());

atomic_set_uint64(&lock->lock, 0);

/* Re-enable Interrupts (if not spinlocks held) */
Critical_Exit();

}
8 / 44



Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

9 / 44



Atomics and Portability

• Lots of variation in atomic instructions, consistency models, compiler behavior
• Results in complex code when writing portable kernels and applications
• Still a big problem today: Your laptop is x86, your cell phone is ARM

I x86: Total Store Order Consistency Model, CISC
I ARM: Relaxed Consistency Model, RISC

• Fortunately, the new C11 standard has builtin support for atomics
I Enable in GCC with the -std=c11 flag

• Also available in C++11, but not discussed today...

10 / 44



C11 Atomics: Basics

• Portable support for synchronization
• New atomic type: e.g., _Atomic(int) foo

I All standard ops (e.g., +, −, /, ∗) become sequentially consistent
I Plus new intrinsics available (cmpxchg, atomic increment, etc.)

• atomic_flag is a special type
I Atomic boolean value without support for loads and stores
I Must be implemented lock-free
I All other types might require locks, depending on the size and architecture

• Fences also available to replace hand-coded memory barrier assembly

11 / 44



Example 1: Atomic Counters

_Atomic(int) packet_count;

void recv_packet(...) {
...
atomic_fetch_add(&packet_count, 1);
...

}

12 / 44



Example 2: Producer, Consumer

struct message msg_buf;
_Atomic(bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_store(&msg_ready, true);

}

struct message *recv(void) {
bool ready = atomic_load(&msg_ready);
if (!ready)

return NULL;
return &msg_buf;

}

13 / 44



Example 3: A Spinlock

• Spinlocks are similar to Mutexes
• Kernels use these for small critical regions

I Busy wait for others to release the lock
I No sleeping and yielding to other Threads

void spin_lock(atomic_flag *lock) {
while (atomic_flag_test_and_set(lock))

/* Spin! */;
}

void spin_unlock(atomic_flag *lock) {
atomic_flag_clear(lock);

}

14 / 44



Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

15 / 44



Overview

• Coherence
I concerns accesses to a single memory location
I makes sure stale copies do not cause problems

• Consistency
I concerns apparent ordering between multiple locations

16 / 44



Multicore Caches

• Performance requires caches
• Caches create an opportunity for cores to disagree about memory
• Bus-based approaches

I “Snoopy” protocols, each CPU listens to memory bus
I Use write through and invalidate when you see a write bits
I Bus-based schemes limit scalability

• Modern CPUs use networks (e.g., hypertransport, UPI)
• Cache is divided into chuncks of bytes called cache lines

I 64-bytes is a typical size

17 / 44



3-state Coherence Protocol (MSI)

• Each cache line is one of three states:

• Modified (sometimes called Exclusive)
I One cache has a valid copy
I That copy is stale (needs to be written back to memory)
I Must invalidate all copies before entering this state

• Shared
I One or more caches (and memory) have a valid copy

• Invalid
I Doesn’t contain any data

• Transitions can take 100–2000 cycles

18 / 44



Core and Bus Actions

• Core has three actions:
• Read (load)

I Read without intent to modify, data can come from memory or another cache
I Cacheline enters shared state

• Write (store)
I Read with intent to modify, must invalidate all other cache copies
I Cacheline in shared (some protocols have an exclusive state)

• Evict
I Writeback contents to memory if modified
I Discard if in shared state

• Performance problem:
I Every transition requires bus communications
I Avoid state transitions whenever possible

19 / 44



Core-to-Core Communications

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

Last Level Cache

20 / 44



Real World Coherence Costs

• See [David] for a great reference, summarized here...
I Intel Xeon: 3 cycle L1, 11 cycle L2, 44 cycle LLC, 355 cycle RAM

• Remote core holds modified line state:
I load: 109 cycles (LLC + 65)
I store: 115 cycles (LLC + 71)
I atomic CAS: 120 cycles (LLC + 76)
I NUMA load: 289 cycles
I NUMA store: 320 cycles
I NUMA atomic CAS: 324 cycles

• But only a partial picture
I Could be faster because of out-of-order execution
I Could be slower because of bus contention or multiple hops

21 / 44

https://rcs.uwaterloo.ca/~ali/readings/sync.pdf


Implications for Multithreaded Design

• Lesson #1: Avoid false sharing
I Processor shares data in cache line chunks
I Avoid placing data used by different threads in the same cache line

• Lesson #2: Align structures to cache lines
I Place related data you need to access together
I Alignment in C11/C++11: alignas(64) struct foo f;

• Lesson #3: Pad data structures
I Arrays of structures lead to false sharing
I Add unused fields to ensure alignment

• Lesson #4: Avoid contending on cache lines
I Reduce costly cache coherence traffic
I Advanced algorithms spin on a cache line local to a core (e.g., MCS Locks)

22 / 44



Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

23 / 44



Improving Spinlocks

• Test-and-set spinlock has several advantages
I Simple to implement and understand
I One memory location for arbitrarily many CPUs

• But also has disadvantages
I Lots of traffic over memory bus (especially when > 1 spinner)
I Not necessarily fair (same CPU acquires lock many times)
I Even less fair on a NUMA machine
I Allegedly Google had fairness problems even on Opterons

• Idea 1: Avoid spinlocks altogether
I Lock free algorithms, RCU, transactional memory

• Idea 2: Reduce bus traffic with better spinlocks
I Design lock that spins only on local memory
I Also gives better fairness

24 / 44



Spinlocks

void Spinlock_Lock(Spinlock *lock)
{

while (atomic_swap_uint64(&lock->lock, 1) == 1)
/* Spin! */;

lock->cpu = CPU();
}

void Spinlock_Unlock(Spinlock *lock)
{

ASSERT(lock->cpu == CPU());

atomic_set_uint64(&lock->lock, 0);
}

25 / 44



Reduce the Swap/Test-and-set Traffic

• How do we reduce bus traffic?

• Swap/Test-and-Set requires invalidating all copies
• O(N) messages on each attempt
• Waiting cores just generate bus traffic!

• Main idea: spinning on a shared cache line is cheaper

26 / 44



Reduce Bus Traffic with Test Test-and-Set

void Spinlock_Lock(Spinlock *lock)
{

while (1)
while (lock->lock == 1)

/* Spin! */;

if (atomic_swap_uint64(&lock->lock, 1) == 0) {
lock->cpu = CPU();
return;

}
}

}

void Spinlock_Unlock(Spinlock *lock)
{

atomic_set_uint64(&lock->lock, 0);
}

27 / 44



How Does Test Test-and-Set Work?

• Spin on a load checking the value
I Initial load requires communications to enter shared state
I Every core can enter the shared state
I Spinning on a load causes no traffic

• Releasing the lock
I Stores 0 to the lock, invalidating everyone’s copy

• Multiple cores re-issue load and see its free

• One or more attempt to aquire lock
I Again, requires invalidating everyone’s copy

28 / 44



Comparing with and without the Additional Test

• Increases latency in contended case
I Bad if we expect locks to be mostly uncontended
I Usually requires upgrading from shared to exclusive

• Traffic on unlock unmodified O(n)

• Wait traffic reduced to zero

29 / 44



Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

30 / 44



MCS lock

• Idea 2: Build a better spinlock
• Lock designed by Mellor-Crummey and Scott

I Goal: reduce bus traffic on cc machines, improve fairness
• Each CPU has a qnode structure in local memory

typedef struct qnode {
struct qnode *next;
bool locked;

} qnode;
I Local can mean local memory in NUMA machine
I Or just its own cache line that gets cached in exclusive mode

• A lock is just a pointer to a qnode
typedef qnode *lock;

• Lock is list of CPUs holding or waiting for lock
• While waiting, spin on your local locked flag

31 / 44

http://www.cs.rice.edu/~johnmc/papers/tocs91.pdf


MCS Acquire

acquire(lock *L, qnode *I) {
I->next = NULL;
qnode *predecessor = I;
XCHG(predecessor, *L); /* atomic swap */
if (predecessor != NULL) {

I->locked = true;
predecessor->next = I;
while (I->locked)

;
}

}
• If unlocked, L is NULL
• If locked, no waiters, L is owner’s qnode
• If waiters, *L is tail of waiter list:

NULLwaiterwaiterowner
next next

*L
next

32 / 44



MCS Acquire

acquire(lock *L, qnode *I) {
I->next = NULL;
qnode *predecessor = I;
XCHG(predecessor, *L); /* atomic swap */
if (predecessor != NULL) {

I->locked = true;
predecessor->next = I;
while (I->locked)

;
}

}
• If unlocked, L is NULL
• If locked, no waiters, L is owner’s qnode
• If waiters, *L is tail of waiter list:

NULLwaiterwaiter NULL*I

predecessor

owner
next next

*L
next

32 / 44



MCS Acquire

acquire(lock *L, qnode *I) {
I->next = NULL;
qnode *predecessor = I;
XCHG(predecessor, *L); /* atomic swap */
if (predecessor != NULL) {

I->locked = true;
predecessor->next = I;
while (I->locked)

;
}

}
• If unlocked, L is NULL
• If locked, no waiters, L is owner’s qnode
• If waiters, *L is tail of waiter list:

*Iwaiterwaiterowner
next next next

NULL

*L
predecessor

NULL
32 / 44



MCS Acquire

acquire(lock *L, qnode *I) {
I->next = NULL;
qnode *predecessor = I;
XCHG(predecessor, *L); /* atomic swap */
if (predecessor != NULL) {

I->locked = true;
predecessor->next = I;
while (I->locked)

;
}

}
• If unlocked, L is NULL
• If locked, no waiters, L is owner’s qnode
• If waiters, *L is tail of waiter list:

NULLwaiterwaiterowner
next next next

*I

*L
predecessor

32 / 44



MCS Release with CAS

release(lock *L, qnode *I) {
if (!I->next)

if (CAS(*L, I, NULL))
return;

while (!I->next)
;

I->next->locked = false;
}

• If I->next NULL and *L == I
I No one else is waiting for lock, OK to set *L = NULL

next

*L

NULL*I

33 / 44



MCS Release with CAS

release(lock *L, qnode *I) {
if (!I->next)

if (CAS(*L, I, NULL))
return;

while (!I->next)
;

I->next->locked = false;
}

• If I->next NULL and *L != I
I Another thread is in the middle of acquire
I Just wait for I->next to be non-NULL

predecessor in locker

NULL locker

*L

NULL
next

*I
33 / 44



MCS Release with CAS

release(lock *L, qnode *I) {
if (!I->next)

if (CAS(*L, I, NULL))
return;

while (!I->next)
;

I->next->locked = false;
}

• If I->next is non-NULL
I I->next oldest waiter, wake up w. I->next->locked = false

next
waiterwaiter

next

*L
next

NULL*I

33 / 44



Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

34 / 44



The deadlock problem

mutex_t m1, m2;

void f1(void *ignored) {
lock(m1);
lock(m2);
/* critical section */
unlock(m2);
unlock (m1);

}

void f2 (void *ignored) {
lock(m2);
lock(m1);
/* critical section */
unlock(m1);
unlock(m2);

}
• Lesson: Dangerous to acquire locks in different orders

35 / 44



More deadlocks

• Same problem with condition variables
I Suppose resource 1 managed by c1, resource 2 by c2
I A has 1, waits on c2, B has 2, waits on c1

• Or have combined mutex/condition variable deadlock:
mutex_t a, b;
cond_t c;

- lock(a); lock(b); while (!ready) wait(b, c);
unlock(b); unlock (a);

- lock(a); lock(b); ready = true; signal(c);
unlock(b); unlock(a);

• Lesson: Dangerous to hold locks when crossing abstraction barriers!
I I.e., lock (a) then call function that uses condition variable

36 / 44



Deadlock conditions

1. Limited access (mutual exclusion):
I Resource can only be shared with finite users

2. No preemption:
I Once resource granted, cannot be taken away

3. Multiple independent requests (hold and wait):
I Don’t ask all at once

(wait for next resource while holding current one)

4. Circularity in graph of requests

• All of 1–4 necessary for deadlock to occur
• Two approaches to dealing with deadlock:

I Pro-active: prevention
I Reactive: detection + corrective action

37 / 44



Prevent by eliminating one condition

1. Limited access (mutual exclusion):
I Buy more resources, split into pieces, or virtualize to make "infinite" copies
I Threads: threads have copy of registers = no lock

2. No preemption:
I Physical memory: virtualized with VM, can take physical page away and give to another

process!

3. Multiple independent requests (hold and wait):
I Wait on all resources at once (must know in advance)

4. Circularity in graph of requests
I Single lock for entire system: (problems?)
I Partial ordering of resources (next)

38 / 44



Cycles and deadlock

• View system as graph
I Processes and Resources are nodes
I Resource Requests and Assignments are edges

• If graph has no cycles → no deadlock
• If graph contains a cycle

I Definitely deadlock if only one instance per resource
I Otherwise, maybe deadlock, maybe not

• Prevent deadlock with partial order on resources
I E.g., always acquire mutex m1 before m2

I Statically assert lock ordering (e.g., VMware ESX)
I Dynamically find potential deadlocks [Witness]

39 / 44

https://www.freebsd.org/cgi/man.cgi?witness(4)


Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Improving spinlock performance

5 MCS Locks

6 Deadlock

7 OS Implementation

40 / 44



Wait Channels

• OS synchronization (except spinlocks) use wait channels
I Manages a list of sleeping threads
I Abstracts details of the thread scheduler

• void WaitChannel_Lock(WaitChannel *wc);
I Lock wait channel operations
I Prevents a race between sleep and wake

• void WaitChannel_Sleep(WaitChannel *wc);
I Blocks calling thread on wait channnel wc
I Causes a context switch (e.g., thread_yield)

• void WaitChannel_WakeAll(WaitChannel *wc);
I Unblocks all threads sleeping on the wait channel

• void WaitChannel_Wake(WaitChannel *wc);
I Unblocks one threads sleeping on the wait channel

41 / 44



Hand-over-Hand Locking

• Hand-over-Hand Locking allows for fine-grained locking
• Useful for concurrent data structure manipulation

I Hold at most two locks the previous and next locks
I Locks must be ordered in a sequence
I You may not go backwards. Why?

• Example: we have locks A, B, C
lock(A)
// Operate on A
lock(B)
unlock(A)
// Operate on B
lock(C)
unlock(B)
// Operate on C
unlock(C)

42 / 44



Example Semaphores

• Mutexes, CVs and Semaphores use WaitChannel and Hand-over-Hand Locking
• Lock order: sem_lock Spinlock, WaitChannel Lock
typedef struct Semaphore {

int sem_count;
Spinlock *sem_lock;
WaitChannel *sem_wchan;

} Semaphore;

43 / 44



Example: Semaphores Implementation

Semaphore_Wait(Semaphore *sem) {
Spinlock_Lock(&sem->sem_lock);
while (sem->sem_count == 0) {
/* Locking the wchan prevents a race on sleep */
WaitChannel_Lock(sem->sem_wchan);
/* Release spinlock before sleeping */
Spinlock_Unlock(&sem->sem_lock);
/* Wait channel protected by it's own lock */
WaitChannel_Sleep(sem->sem_wchan);
/* Recheck condition, no locks held */
Spinlock_Lock(&sem->sem_lock);

}
sem->sem_count--;
Spinlock_Unlock(&sem->sem_lock);

}

Semaphore_Post(Semaphore *sem) {
Spinlock_Lock(&sem->sem_lock);
sem->sem_count++;
WaitChannel_Wake(sem->sem_wchan);
Spinlock_Unlock(&sem->sem_lock);

} 44 / 44


	Synchronization and memory consistency review
	C11 Atomics
	Cache coherence – the hardware view
	Improving spinlock performance
	MCS Locks
	Deadlock
	OS Implementation

