
CS350: Operating Systems

Lecture 8: Virtual Memory – Operating System

Ali Mashtizadeh

University of Waterloo

1 / 44

Outline

1 Paging

2 Eviction policies

3 Thrashing

4 User-level API

5 Case study: 4.4 BSD

2 / 44

Paging

• Use disk to simulate larger virtual than physical mem
3 / 44

Working set model
#

of
ac

ce
ss

es

virtual address

• Disk much, much slower than memory
I Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
I Keep the hot 20% in memory
I Keep the cold 80% on disk

4 / 44

Working set model
#

of
ac

ce
ss

es

virtual address

• Disk much, much slower than memory
I Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
Keep the hot 20% in memory

I Keep the cold 80% on disk

4 / 44

Working set model
#

of
ac

ce
ss

es

virtual address

• Disk much, much slower than memory
I Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
I Keep the hot 20% in memory

Keep the cold 80% on disk

4 / 44

Paging challenges

• How to resume a process after a fault?
I Need to save state and resume
I Process might have been in the middle of an instruction!

• What to fetch from disk?
I Just needed page or more?

• What to eject?
I How to allocate physical pages amongst processes?
I Which of a particular process’s pages to keep in memory?

5 / 44

Re-starting instructions

• Hardware provides kernel with information about page fault
I Faulting virtual address (%cr2 reg in x86)
I Address of instruction that caused fault (%rip in trap frame)
I Was the access a read or write? Was it an instruction fetch?

Was it caused by user access to kernel-only memory?

• Hardware must allow resuming after a fault
• Idempotent instructions are easy

I E.g., simple load or store instruction can be restarted
I Just re-execute any instruction that only accesses one address

6 / 44

What to fetch

• Bring in page that caused page fault
• Pre-fetch surrounding pages?

I Reading two disk blocks approximately as fast as reading one
I As long as no track/head switch, seek time dominates
I If application exhibits spacial locality, then big win to store and read multiple contiguous pages

• Also pre-zero unused pages in idle loop
I Need 0-filled pages for stack, heap, anonymously mmapped memory
I Zeroing them only on demand is slower
I Hence, many OSes zero freed pages while CPU is idle

7 / 44

Selecting physical pages

• May need to eject some pages
I More on eviction policy in two slides

• May also have a choice of physical pages
• Direct-mapped physical caches

I Virtual → Physical mapping can affect performance
I In old days: Physical address A conflicts with kC + A

(where k is any integer, C is cache size)
I Applications can conflict with each other or themselves
I Scientific applications benefit if consecutive virtual pages do not conflict in the cache
I Many other applications do better with random mapping
I These days: CPUs more sophisticated than kC + A

8 / 44

Superpages

• How should OS make use of “large” mappings
I x86 has 2/4MB pages that might be useful
I Alpha has even more choices: 8KB, 64KB, 512KB, 4MB

• Sometimes more pages in L2 cache than TLB entries
I Don’t want costly TLB misses going to main memory

• Or have two-level TLBs
I Want to maximize hit rate in faster L1 TLB

• OS can transparently support superpages [Navarro]
I “Reserve” appropriate physical pages if possible
I Promote contiguous pages to superpages
I Does complicate evicting (esp. dirty pages) – demote

9 / 44

http://www.usenix.org/events/osdi02/tech/full_papers/navarro/navarro.pdf

Outline

1 Paging

2 Eviction policies

3 Thrashing

4 User-level API

5 Case study: 4.4 BSD

10 / 44

Straw man: FIFO eviction

• Evict oldest fetched page in system
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 physical pages: 9 page faults

11 / 44

Straw man: FIFO eviction

• Evict oldest fetched page in system
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 physical pages: 9 page faults

• 4 physical pages: 10 page faults

11 / 44

Belady’s Anomaly

• More physical memory doesn’t always mean fewer faults
12 / 44

Optimal page replacement

• What is optimal (if you knew the future)?

I Replace page that will not be used for longest period of time

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages:

13 / 44

Optimal page replacement

• What is optimal (if you knew the future)?
I Replace page that will not be used for longest period of time

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages:

13 / 44

LRU page replacement

• Approximate optimal with least recently used
I Because past often predicts the future

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages: 8 page faults

• Problem 1: Can be pessimal – example?

I Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
14 / 44

LRU page replacement

• Approximate optimal with least recently used
I Because past often predicts the future

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages: 8 page faults

• Problem 1: Can be pessimal – example?
I Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
14 / 44

Straw man LRU implementations

• Stamp PTEs with timer value
I E.g., CPU has cycle counter
I Automatically writes value to PTE on each page access
I Scan page table to find oldest counter value = LRU page
I Problem: Would double memory traffic!

• Keep doubly-linked list of pages
I On access remove page, place at tail of list
I Problem: again, very expensive

• What to do?
I Just approximate LRU, don’t try to do it exactly

15 / 44

Clock algorithm

• Use accessed bit supported by most hardware
I E.g., Pentium will write 1 to A bit in PTE on first access
I Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

I page’s A bit = 1, set to 0 & skip
I else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1
A = 0

16 / 44

Clock algorithm

• Use accessed bit supported by most hardware
I E.g., Pentium will write 1 to A bit in PTE on first access
I Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

I page’s A bit = 1, set to 0 & skip
I else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0
A = 0

16 / 44

Clock algorithm

• Use accessed bit supported by most hardware
I E.g., Pentium will write 1 to A bit in PTE on first access
I Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

I page’s A bit = 1, set to 0 & skip
I else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0
A = 0

16 / 44

Clock algorithm (continued)

• Large memory may be a problem
I Most pages referenced in long interval

• Add a second clock hand
I Two hands move in lockstep
I Leading hand clears A bits
I Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1

A = 1

• Can also take advantage of hardware Dirty bit
I Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed,

Dirty)
I Consider clean pages for eviction before dirty

• Or use n-bit accessed count instead just A bit
I On sweep: count = (A << (n − 1)) | (count >> 1)ft
I Evict page with lowest count 17 / 44

Clock algorithm (continued)

• Large memory may be a problem
I Most pages referenced in long interval

• Add a second clock hand
I Two hands move in lockstep
I Leading hand clears A bits
I Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0

A = 1

• Can also take advantage of hardware Dirty bit
I Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed,

Dirty)
I Consider clean pages for eviction before dirty

• Or use n-bit accessed count instead just A bit
I On sweep: count = (A << (n − 1)) | (count >> 1)ft
I Evict page with lowest count 17 / 44

Clock algorithm (continued)

• Large memory may be a problem
I Most pages referenced in long interval

• Add a second clock hand
I Two hands move in lockstep
I Leading hand clears A bits
I Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0

A = 1

• Can also take advantage of hardware Dirty bit
I Each page can be (Unaccessed, Clean), (Unaccessed, Dirty), (Accessed, Clean), or (Accessed,

Dirty)
I Consider clean pages for eviction before dirty

• Or use n-bit accessed count instead just A bit
I On sweep: count = (A << (n − 1)) | (count >> 1)ft
I Evict page with lowest count 17 / 44

Other replacement algorithms

• Random eviction
I Simple to implement
I Not overly horrible (avoids Belady & pathological cases)
I Used in hypervisors to avoid double swap [Waldspurger]

• LFU (least frequently used) eviction
• MFU (most frequently used) algorithm
• Neither LFU nor MFU used very commonly
• Workload specific policies: Databases

18 / 44

https://rcs.uwaterloo.ca/~ali/readings/esxrm.pdf

Naïve paging

• Naïve page replacement: 2 disk I/Os per page fault
19 / 44

Page buffering

• Idea: reduce # of I/Os on the critical path
• Keep pool of free page frames

I On fault, still select victim page to evict
I But read fetched page into already free page
I Can resume execution while writing out victim page
I Then add victim page to free pool

• Can also yank pages back from free pool
I Contains only clean pages, but may still have data
I If page fault on page still in free pool, recycle

20 / 44

Page allocation

• Allocation can be global or local
• Global allocation doesn’t consider page ownership

I E.g., with LRU, evict least recently used page of any proc
I Works well if P1 needs 20% of memory and P2 needs 70%:

P1 P2

I Doesn’t protect you from memory pigs
(imagine P2 keeps looping through array that is size of mem)

• Local allocation isolates processes (or users)
I Separately determine how much memory each process should have
I Then use LRU/clock/etc. to determine which pages to evict within each process

21 / 44

Outline

1 Paging

2 Eviction policies

3 Thrashing

4 User-level API

5 Case study: 4.4 BSD

22 / 44

Thrashing

Thrashing is when an application is in a constantly swapping pages in and out preventing the
application from making forward progress at any reasonable rate.

• Processes require more memory than system has
I Each time one page is brought in, another page, whose contents will soon be referenced, is

thrown out
I Processes will spend all of their time blocked, waiting for pages to be fetched from disk
I I/O devs at 100% utilization but system not getting much useful work done

• What we wanted: virtual memory the size of disk with access time the speed of physical
memory

• What we got: memory with access time of disk

23 / 44

Reasons for thrashing

• Access pattern has no temporal locality (past 6= future)

(80/20 rule has broken down)
• Hot memory does not fit in physical memory

P1

memory

• Each process fits individually, but too many for system
P1 P2

P3 P4
P5 P6

P7 P8
P9 P10

P11P12
P13P14

P15P16

memory

I At least this case is possible to address

24 / 44

Dealing with thrashing

• Approach 1: working set
I Thrashing viewed from a caching perspective: given locality of reference, how big a cache does

the process need?
I Or: how much memory does the process need in order to make reasonable progress (its

working set)?
I Only run processes whose memory requirements can be satisfied

• Approach 2: page fault frequency
I Thrashing viewed as poor ratio of fetch to work
I PFF = page faults / instructions executed
I If PFF rises above threshold, process needs more memory.

Not enough memory on the system? Swap out.
I If PFF sinks below threshold, memory can be taken away

25 / 44

Working sets
wo

rk
in

g
se

t
siz

e

time

Transitions

• Working set changes across phases
I Baloons during phase transitions

26 / 44

Outline

1 Paging

2 Eviction policies

3 Thrashing

4 User-level API

5 Case study: 4.4 BSD

27 / 44

Recall typical virtual address space

kernel
stack

heap
uninitialized data (bss)

initialized data
read-only data

code (text)

breakpoint

• Dynamically allocated memory goes in heap
• Top of heap called breakpoint

I Addresses between breakpoint and stack all invalid
28 / 44

Early VM system calls

• OS keeps “Breakpoint” – top of heap
I Memory regions between breakpoint & stack fault on access

• char *brk(const char *addr);
I Set and return new value of breakpoint

• char *sbrk(int incr);
I Increment value of the breakpoint & return old value

• Can implement malloc in terms of sbrk
I But hard to “give back” physical memory to system

29 / 44

Memory mapped files

kernel
stack

heap
uninitialized data (bss)

initialized data
read-only data

code (text)

mmapped
regions

• Other memory objects between heap and stack

30 / 44

mmap system call

• void *mmap(void *addr, size_t len, int prot,
int flags, int fd, off_t offset)

I Map file specified by fd at virtual address addr
I If addr is NULL, let kernel choose the address

• prot – protection of region
I Bitwise-or of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE

• flags
I MAP_ANON – anonymous memory (fd should be -1)
I MAP_PRIVATE – modifications are private
I MAP_SHARED – modifications seen by everyone

31 / 44

https://man.freebsd.org/cgi/man.cgi?query=mmap

More VM system calls

• int munmap(void *addr, size_t len)
I Removes memory-mapped object

• int mprotect(void *addr, size_t len, int prot)
I Changes protection on pages to or of PROT_. . .

• int msync(void *addr, size_t len, int flags);
I Flush changes of mmapped file to backing store

• int mincore(void *addr, size_t len, char *vec)
I Returns in vec which pages present

• int madvise(void *addr, size_t len, int behav)
I Advise the OS on memory use

32 / 44

https://man.freebsd.org/cgi/man.cgi?query=munmap
https://man.freebsd.org/cgi/man.cgi?query=mprotect
https://man.freebsd.org/cgi/man.cgi?query=msync
https://man.freebsd.org/cgi/man.cgi?query=mincore
https://man.freebsd.org/cgi/man.cgi?query=madvise

Exposing page faults

struct sigaction {
union { /* signal handler */

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);

};
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

};

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact)

• Can specify function to run on SIGSEGV
(Unix signal raised on invalid memory access)

33 / 44

Example: OpenBSD/i386 siginfo

struct sigcontext {
int sc_gs; int sc_fs; int sc_es; int sc_ds;
int sc_edi; int sc_esi; int sc_ebp; int sc_ebx;
int sc_edx; int sc_ecx; int sc_eax;

int sc_eip; int sc_cs; /* instruction pointer */
int sc_eflags; /* condition codes, etc. */
int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */

int sc_trapno;
int sc_err;

};
• Linux uses ucontext_t – same idea, just uses nested structures that won’t all fit on

one slide
34 / 44

VM tricks at user level

• Combination of mprotect/sigaction very powerful
I Can use OS VM tricks in user-level programs [Appel]
I E.g., fault, unprotect page, return from signal handler

• Technique used in object-oriented databases
I Bring in objects on demand
I Keep track of which objects may be dirty
I Manage memory as a cache for much larger object DB

• Other interesting applications
I Useful for some garbage collection algorithms
I Snapshot processes (copy on write)

35 / 44

https://man.freebsd.org/cgi/man.cgi?query=mprotect
https://man.freebsd.org/cgi/man.cgi?query=sigaction
https://rcs.uwaterloo.ca/~ali/readings/vmpup.pdf

Outline

1 Paging

2 Eviction policies

3 Thrashing

4 User-level API

5 Case study: 4.4 BSD

36 / 44

Overview

• Windows and most UNIX systems seperate the VM system into two parts
I VM PMap: Manages the hardware interface (e.g. TLB in MIPS)
I VM Map: Machine independent representation of memory

• 4.4 BSD VM is based on [Mach VM]

• VM Map consists of one or more objects (or segments)
• Each object consists of a contiguous mmap()
• Objects can be backed by files and/or shared between processes
• VM PMap manages the hardware (often caches mappings)

37 / 44

https://rcs.uwaterloo.ca/~ali/readings/machvm.pdf

Operation

• Calls into mmap(), munmap(), mprotect()
I Update VM Map
I VM Map routines call into the VM PMap to invalidate and update the TLB

• Page faults
I Exception handler calls into the VM PMap to load the TLB
I If the page isn’t in the PMap we call VM Map code

• Low memory options
I PMap is a cache and can be discarded during a low memory condition

38 / 44

4.4 BSD VM system [McKusick]

• Each process has a vmspace structure containing
I vm_map – machine-independent virtual address space
I vm_pmap – machine-dependent data structures
I statistics – e.g. for syscalls like getrusage ()

• vm_map is a linked list of vm_map_entry structs
I vm_map_entry covers contiguous virtual memory
I points to vm_object struct

• vm_object is source of data
I e.g. vnode object for memory mapped file
I points to list of vm_page structs (one per mapped page)
I shadow objects point to other objects for copy on write

39 / 44

http://proquest.safaribooksonline.com/9780768685275/ch05lev1sec4

4.4 BSD VM data structures

vmspace

vm_map_entry

vm_map_entry

vm_map_entry

vm_map_entry

shadow
object

vm_page

object

vnode/

shadow
object

vm_page

vnode/

object

vnode/

object

vm_page

vm_page

vm_page

vm_page

vm_page

vm_map

vm_pmap

stats

40 / 44

Pmap (machine-dependent) layer

• Pmap layer holds architecture-specific VM code
• VM layer invokes pmap layer

I On page faults to install mappings
I To protect or unmap pages
I To ask for dirty/accessed bits

• Pmap layer is lazy and can discard mappings
I No need to notify VM layer
I Process will fault and VM layer must reinstall mapping

• Pmap handles restrictions imposed by cache

41 / 44

Example uses

• vm_map_entry structs for a process
I r/o text segment → file object
I r/w data segment → shadow object → file object
I r/w stack → anonymous object

• New vm_map_entry objects after a fork:
I Share text segment directly (read-only)
I Share data through two new shadow objects

(must share pre-fork but not post-fork changes)
I Share stack through two new shadow objects

• Must discard/collapse superfluous shadows
I E.g., when child process exits

42 / 44

What happens on a fault?

• Traverse vm_map_entry list to get appropriate entry
I No entry? Protection violation? Send process a SIGSEGV

• Traverse list of [shadow] objects
• For each object, traverse vm_page structs
• Found a vm_page for this object?

I If first vm_object in chain, map page
I If read fault, install page read only
I Else if write fault, install copy of page

• Else get page from object
I Page in from file, zero-fill new page, etc.

43 / 44

Paging in day-to-day use

• Demand paging
I Read pages from vm_object of executable file

• Copy-on-write (fork, mmap, etc.)
I Use shadow objects

• Growing the stack, BSS page allocation
I A bit like copy-on-write for /dev/zero
I Can have a single read-only zero page for reading
I Special-case write handling with pre-zeroed pages

• Shared text, shared libraries
I Share vm_object (shadow will be empty where read-only)

• Shared memory
I Two processes mmap same file, have same vm_object (no shadow)

44 / 44

	Paging
	Eviction policies
	Thrashing
	User-level API
	Case study: 4.4 BSD

