
CS350 Operating Systems Spring 2006

Assignment Two
Due: July 5, 2006 (noon)
Returned: July 18, 2006

Appeal deadline: July 25, 2006

This assignment requires you to add support for virtual memory management to the NachOS operating
system.

1 Design Requirements

The specific requirements for this assignment are as follows:

1. Implement support for the hardware TLB. To enable the TLB in the simulated hardware, you must
edit the NachOS Makefile and then rebuild nachos from scratch. (In the Makefile add -DUSE_TLB

to the DEFINES line.) After you have enabled the TLB, the hardware will look only in the TLB to
find address translations. The hardware will no longer look up address translations in your page tables
(but the OS still needs to maintain and will use them).

The TLB itself is an array of TLBSize page table entries. Your OS can manipulate (read and modify)
these entries through the tlb member of the Machine class, e.g.,

kernel->machine->tlb[i]

refers to the ith entry in the TLB.

It is important to distinguish a TLB fault from a page fault and to understand the differences between
the two. When a PageFaultException occurs in NachOS, it indicates that the TLB does not contain a
valid translation for the virtual page being accessed. Although this is called a PageFaultException it
is actually indicating a TLB fault. When a TLB fault occurs the ExceptionHandler is called with the
exception type set to PageFaultException. The kernel needs to load a valid translation into the TLB
(which may or may not require loading a page frame) and to re-execute the instruction that generated
the TLB fault.

When a TLB fault occurs and the page that needs to be accessed does not reside in memory, it is
called a page fault. Note that a TLB fault can occur even when the page being referenced is already
in memory.

The TLB is used for all address translations, so any entry in the TLB that is marked as “valid” (i.e.,
the valid bit is set) will be used for translations. Therefore, your kernel must ensure that the correct
page is in memory and that the running application should be permitted to access that page (i.e., it’s
part of the applications address space) if the TLB entry is valid.

You are to implement a simple FIFO algorithm for TLB replacement.

2. Provide support for demand paging/loading. In particular, rather than loading all pages of the program
into memory initially, load them only as required. If a page is never referenced, then it should never be
loaded. This means that initially no pages of a process should be loaded into memory. The program
actually begins execution without any pages in memory and pages each page in (including the first
page referenced) as the result of handling page fault exceptions.

Implementation hint: start simply by running only one small program that you know will fit completely
in memory, since this part of the assignment does not require one to remove pages from memory. Once
you are convinced this works move on to the next part of the assignment.

1



3. Provide support for larger virtual address spaces (and more concurrent processes) by adding the ability
to choose a victim page to be replaced using the FIFO algorithm and replacing that page. Use a global
page replacement scheme.

If a page has been modified, before replacing it, you will need to save that page (page it out) to a
NachOS simulated disk that is used as the the swap device. You can reference this in the kernel through
kernel->swapDisk. So, the level of multiprogramming of your OS will be limited by the size of the
disk, not by the size of RAM. Your kernel is responsible for managing the space on the swap device.

Be sure to only write a page to the swap device if it has been modified; that is, load a page repeatedly
from the executable file until the page content changes. You may assume that the executable file does
not change while the program is running.

Implementation hint: you might wish to start by first ensuring that you can run a program with a
large memory footprint that does not modify any pages. Once you are convinced that your code works
for this case, add the ability to page out to, and back in from, the swap device.

4. Implement the Enhanced Second-Chance (Clock) Algorithm as described in the course notes and the
text book. Note that the text book has more details about the algorithm than the course notes.

For all replacement algorithms in this assignment use a global page replacement scheme.

By default NachOS should use your new algorithm. By using a -F option on the command line, your
version of NachOS should use the FIFO page replacement algorithm.

Implementation hint: it is probably a good idea to implement, test, and debug your system using FIFO
first before implementing the additional page replacement algorithm.

5. Keep and print statistics for the number of TLB faults, pages faulted in, total pages replaced, dirty
pages replaced (i.e., written to the swap device) and clean pages replaced (i.e., not written to the swap
device). (Yes, clean pages replaced plus dirty pages replaced should equal the total pages replaced.)
Note that although NachOS already tracks and prints some statistics, this is done by the hardware
(in code/machine/stats.h and code/machine/stats.cc). You may NOT modify these files (or any
files in code/machine because this would be equivalent to trying to modify the hardware. Instead add
code elsewhere in your kernel to track these statistics.

In the NachOS code provided to you, the statistics tracked by the hardware are printed out when the
simulated machine halts. They can also be printed after “ctrl-z” has been used to suspend machine
execution (see the ctrlZhandler function in code/threads/main.cc). Modify NachOS so that your
kernel-tracked statistics will also be printed under these same circumstances.

You should also reset your kernel-tracked statistics in the ctrlZhandler when the other hardware
tracked statistics are reset.

case ’r’: kernel->stats->Reset();

break;

6. Provide support for automatic sharing of read-only code pages between address spaces. That is, if the
same program is loaded into more than one process’ address space, any pages that hold program code
should not appear more than once in physical memory. To simplify the problem, assume that programs
with the same name will use the same executable, and that the executable will not change.

7. In addition to the set of test programs you’ll write to demonstrate that your OS works, write test
programs (as outlined below) that initialize every element of a two-dimensional square matrix of
characters. This must be done by touching (by writing the value ‘a’) once, and only once, to each
element of the matrix. The size of the matrix must be as close as possible to, but no less than, N

pages, where N is the total number of frames of memory in the workstation. Your programs should
only initialize the matrix and therefore shouldn’t be generating extra page faults by touching or using
unnecessary code or data. Write five programs that differ in the order in which they initialize the
elements of the matrix (some programs may use the same order if necessary). The five required
programs are as follows:

2



(a) A program that generates as few page faults as possible when run with your FIFO page replace-
ment algorithm.

(b) A program that generates as many page faults as possible when run with your FIFO page replace-
ment algorithm.

(c) A program that generates as few page faults as possible when run with your additional page
replacement algorithm.

(d) A program that generates as many page faults as possible when run with your additional page
replacement algorithm.

(e) A program that generates as many TLB faults as possible when run with your FIFO page re-
placement algorithm.

Hand in a description of these test programs and their expected behaviour along with paging-related
statistics (as described in point 5 above) that are output as a result of running these programs.

3


