
5.1Scheduling

• Scheduling defines the strategies used to allocate the
processor.
– Successful scheduling tries to meet particular objectives such as

fast response time, high throughput and high process efficiency.

• Long-term scheduling
– The long-term scheduler controls the degree of multiprogramming in

the system.
– It determines when a process is allowed to enter the system.

• Medium-term scheduling
– The medium-term scheduler is used for process swapping.

• Short-term scheduling
– The short-term scheduler of CPU scheduler selects a process from

the ready queue and dispatches it.

Motivation

Types of Scheduling

5.2Scheduling
Process State Transitions

and Scheduling

New

Running ExitReady

Blocked

Admit

Release
Time-Out

Dispatch

Event
WaitEvent

Occurs
Suspended Suspend

Activate

LTS: Long Term Scheduling
MTS: Medium Term Scheduling
STS: Short Term Scheduling

LTS
STS

MTS

5.3Scheduling

Queuing Diagram for Scheduling

CPU

Interactive
Users

Ready
Queue Release

Time - Out

Ev
en

t W
ai

t

Ev
en

t O
cc

ur
s

Blocked,
Suspend Queue

Blocked Queue

B
at

ch
 J

ob
s

LTS STS

Ready,
Suspend Queue

Event Occurs

MTS

MTSMTS

Batch
Queue

5.4Scheduling Scheduling Criteria
• User Oriented, Performance-Related Criteria:

– Response time
• In an interactive system, this is the time interval between submission of the

request (hitting the enter key) and the reception of some response.
– Turnaround time

• For batch jobs, this is the time interval between submission of a process
and its completion.

– Deadlines
• When process deadlines are specified, execution of processes should be

prioritized to increase the likelihood that deadlines will be met.
– Especially important for some critical real-time systems.

• User Oriented, Other Criteria:

– Predictability
• A job should run in about the same amount of time and at about the same

cost independent of the load on the system.

5.5Scheduling Scheduling Criteria (cont.)

• System Oriented, Performance-Related Criteria:
– Throughput

• Throughput is the number of processes completed per unit of time.
• Since short response times may involve considerable context switching, high

throughput may be somewhat compromised by short response times.
– Processor utilization

• This is the percentage of time that the processor is busy.

• System Oriented, Other Criteria:
– Fairness

• Unless there is a priority mechanism in place, the system should give
processes equal opportunities to secure resources including the processor
itself.

• In particular, no process should suffer starvation.
– Enforcing priorities

• The scheduling policy should favour processes with a higher priority.
– Balancing resources

• The scheduling policy should keep the resources of the system busy.

5.6Scheduling
Process Priorities

• Process priorities can be facilitated by using multiple ready
queues.
– The dispatcher will select processes from queue RQj only if queue RQi

is empty (for all i<j).
– To prevent starvation of processes in the lower priority queues, we can

use an aging policy that allows a process to move up to a higher
priority queue if it has not been dispatched for some predetermined
length of time.

CPU
RQ0

Release

Preemption

Ev
en

t W
ai

t

Event Occurs Blocked Queue

Dispatch

RQ1

RQn

.
.

.

Admit
Multiple
Ready
Queues

Aging

5.7Scheduling

Priority Policies

• An OS may have a policy that decides on the priority (i.e.
which ready queue) is to be used for both newly admitted
processes and processes returning to the ready queue.

• This may depend on:
– inherent priority of the process
– predicted execution time
– recent request for I/O
– an aging policy.

5.8Scheduling

Preemptive vs. Nonpreemptive

• Nonpreemptive
– If the process is in a running state, it stays in that state until it

terminates or blocks itself to wait for an I/O completion or some
OS service.

• (NO time slicing!)

• Preemptive
– The currently running process may be interrupted and moved to

the ready state by the OS.
• Examples:

- time slicing
- SRT (to be described later)

– We now consider various scheduling algorithms.

5.9SchedulingFirst-Come, First-Served Scheduling

• Strategy:
– As each process becomes ready, it joins the ready queue.
– When the currently running process stops, the oldest process is next

selected from the ready queue.
• FCFS is nonpreemptive.

• Pro:
– FCFS is simple and has the least overhead.
– Process starvation cannot occur.

• Con:
– FCFS tends to penalize short processes and I/O bound processes.

• Since processes execute to completion CPU bound processes are favored
over I/O bound processes.

– Response times may be too long.
• (bad for a multiprocessor environment)

– Note: Despite the shortcomings, it is worthwhile to study FCFS as a
starting point for other more sophisticated strategies.

5.10Scheduling
Round-Robin Scheduling

• A Preemptive Strategy:
– A clock interrupt is generated at regular intervals to limit execution times

• The interrupt defines a time slice for a process.

– When the interrupt occurs, the currently running process is preempted (placed
on the ready queue) and the next process to be dispatched is taken from the
ready queue on a FCFS basis.

• So: RR is essentially FCFS + time slicing.
• RR involves more overhead (throughput is decreased) but the CPU is

shared in a more equitable fashion.
• The time quantum should be slightly greater than the time required for a

“typical” transaction.
• Note: fraction of time that process runs is q/(q+v) where v represents

overhead time.
• Pro:

– RR is very effective in multi-user time-sharing environments and provides good
response times for short processes.

– Process starvation is not possible.

• Con:
– There is tendency to favor CPU bound processes over I/O bound processes

• the latter miss out on full time slices since they frequently block to do I/O.

5.11Scheduling
Virtual RR Scheduling

• Strategy:
– This is the same as RR except that an auxiliary queue is used to hold

processes that have completed and I/O wait.
• The auxilliary queue has a higher dispatch priority than the ready queue.
• I/O bound processes now do better.

CPU

Ready Queue

Release

Time-Out

I/O n Occurs

I/O Queue n

Dispatch

Auxilliary Queue

Admit

I/O n Wait

I/O 1 Occurs

I/O Queue 1

I/O 1 Wait

I/O 2 Occurs

I/O Queue 2

I/O 2 Wait

.

.

.

5.12Scheduling Shortest Process Next Scheduling
• The SPN Strategy:

– The process with the shortest expected process time is selected next.
• SPN is nonpreemptive.

– SPN approximates the idealized (optimal) strategy of dispatching the
process with the smallest next CPU burst.

• If this could be done it would give us the optimal strategy in providing the
minimum average wait time.

– SPN attempts to predict the length of the next CPU burst by working
with previous behaviour.

• A common approach is to use an exponential average:
Sn+1 = αTn + (1-α)Sn where:
Sn = predicted CPU burst for the nth dispatch
Tn = actual CPU burst for the nth dispatch.

• Usually α

may be chosen as 0.5 (perhaps a bit more).
• A high value of α

will quickly reflect a rapid change in CPU bursts.

• Pro:
– SPN provides high throughput and good response times for short

processes.

• Con:
– Starvation is possible and there is no preemption.

5.13Scheduling Effect of SPN
• Consider a ready queue containing three processes with next

CPU bursts of:
12, 3, and 9.

• Scenario A:
– running the processes in a non-SPN order:

12 9 3
Response times: 12 21 24

Average Response Time = (12+21+24) / 3 = 19

• Scenario B:
– running the processes in the SPN order:

3 9 1 2
Response times: 3 12 24

Average Response Time = (3+12+24) / 3 = 13

5.14Scheduling
Shortest Remaining Time Scheduling

(SRT)
• Strategy:

– The dispatcher chooses the process that has the shortest expected
remaining CPU burst.

• The preemptive version of SPN.
• If a new process in the ready queue has a predicted CPU burst that is

shorter than the currently running process the dispatcher will let it run by
preempting the running process.

• Overhead is somewhat higher than SPN but the benefits are worth the
extra expense.

• Pro:
– SRT provides high throughput and good response times.

• Con:
– Process starvation is possible.

5.15SchedulingHighest Response Ratio Next Scheduling
• A Non-preemptive Strategy:

– In an attempt to minimize the normalized turnaround time (ratio of
turnaround time to service time) we choose the ready process with the
greatest response ratio RR = (w + s)/s.

• Here w is the time spent waiting for the CPU and s is the expected service
time (CPU burst).

• By picking the largest RR we help to reduce w so that the average
normalized turnaround time is also reduced.

• As for SRT and SPN the service time s is evaluated by prediction using
exponential averaging.

– Note that “aged” processes (no CPU activity for a long time) will
automatically get preference.

• HRRN is a good blend of FCFS and SPN.

• Pro:
– Throughput is high and response time is good.
– There is a good balance in the treatment of long and short processes
– Process starvation is not possible.

• Con:
– Overhead can be high.

5.16Scheduling Multilevel Feedback Scheduling

• Strategy:
– Preemptive scheduling is done with a dynamic priority mechanism

using multiple priority queues.
• The idea is to automatically separate processes with different CPU-burst

lengths.
• A process starts at a particular queue level.
• Each time a process is preempted by the end of a time slice it goes to a

queue with a priority one level lower than the one just used.
• Within each queue FCFS is used except for the lowest level queue which

uses round-robin.
• The effect is to penalize jobs that have longer CPU-bursts since short

jobs complete before going into lower level queues.
• Short burst processes (I/O bound and interactive) tend to stay in the

higher queues.
• The quantum duration may be longer for successively lower queues.
• Does not depend on CPU burst prediction as does SPN, SRT, and

HRRN.

5.17Scheduling

Multilevel Feedback Scheduling (cont.)

CPU

RQ0

Release

Dispatch
RQ1

RQn

. .

.

Admit

RQ2

. .

.

from RQ n-1 via CPU

to
RQ 3

to
RQ 2

to
RQ 1

Not Shown: paths leaving the CPU going to the wait event queues.
After an event occurs, the process goes back
to the same queue.

Ready Queues:

5.18Scheduling Multilevel Feedback Scheduling (cont.)

• Pro:
– Feedback provides a simple yet effective strategy.
– It can be modified for various needs (see the NT approach later).

• Con:
– I/O-bound processes tend to be favoured and starvation is possible.

• To avoid starvation we can promote older processes to a higher-priority
queue.

• Design aspects:
– The multilevel feedback scheduling strategy covers a variety of

different possibilities specified by the following parameters:
• the number of queues
• the scheduling algorithm used for each queue
• the policy used to upgrade a process in order to avoid starvation
• the policy used to determine the starting queue for a process having its

first CPU burst.
• the policy used for demotion in the queues.

	Motivation
	Process State Transitions�and Scheduling
	Queuing Diagram for Scheduling
	Scheduling Criteria
	Scheduling Criteria (cont.)
	Process Priorities
	Priority Policies
	Preemptive vs. Nonpreemptive
	First-Come, First-Served Scheduling
	Round-Robin Scheduling
	Virtual RR Scheduling
	 Shortest Process Next Scheduling
	Effect of SPN
	Shortest Remaining Time Scheduling�(SRT)
	Highest Response Ratio Next Scheduling
	Multilevel Feedback Scheduling
	Multilevel Feedback Scheduling (cont.)
	Multilevel Feedback Scheduling (cont.)

