Scheduling Motivation 51

« Scheduling defines the strategies used to allocate the
processor.

— Successful scheduling tries to meet particular objectives such as
fast response time, high throughput and high process efficiency.

Types of Scheduling

* Long-term scheduling

— The long-term scheduler controls the degree of multiprogramming in
the system.

— It determines when a process is allowed to enter the system.

e Medium-term scheduling
— The medium-term scheduler is used for process swapping.

e Short-term scheduling

— The short-term scheduler of CPU scheduler selects a process from
the ready queue and dispatches it.

Scheduling o 5.2
Process State Transitions

and Scheduling

STS

______________ Runnin T @
—Lguming e

LTS: Long Term Scheduling
MTS: Medium Term Scheduling
STS: Short Term Scheduling

MTS

Scheduling

Queuing Diagram for Scheduling

Batch Jobs

Batch

Interactive

LTS
A

Users

Event Occurs

Time - Out
Ready

MTS g
MTS 1 %
o
Ready, 3

Suspend Queue

Event Occurs
4—
Blocked, MTS
Suspend Queue
Blocked Queue

5.3

Scheduling Scheduling Criteria >4

 User Oriented, Performance-Related Criteria:

— Response time

* |n an interactive system, this is the time interval between submission of the
request (hitting the enter key) and the reception of some response.

— Turnaround time
» For batch jobs, this is the time interval between submission of a process
and its completion.
— Deadlines

* When process deadlines are specified, execution of processes should be
prioritized to increase the likelihood that deadlines will be met.

— Especially important for some critical real-time systems.

e User Oriented, Other Criteria:

— Predictability

* A job should run in about the same amount of time and at about the same
cost independent of the load on the system.

Scheduling Scheduling Criteria (cont.) -

« System Oriented, Performance-Related Criteria;:

— Throughput
* Throughput is the number of processes completed per unit of time.
» Since short response times may involve considerable context switching, high
throughput may be somewhat compromised by short response times.
— Processor utilization
« This is the percentage of time that the processor is busy.

« System Oriented, Other Criteria;

— Fairness

» Unless there is a priority mechanism in place, the system should give
processes equal opportunities to secure resources including the processor
itself.

 |n particular, no process should suffer starvation.
— Enforcing priorities
* The scheduling policy should favour processes with a higher priority.

— Balancing resources
» The scheduling policy should keep the resources of the system busy.

Scheduling

* Process priorities can be facilitated by using multiple ready

queues.

Process Priorities

5.6

— The dispatcher will select processes from queue RQ, only if queue RQ,
Is empty (for all i<)).

— To prevent starvation of processes in the lower priority queues, we can
use an aging policy that allows a process to move up to a higher

priority queue if it has not been dispatched for some predetermined

length of time.

Admit v
'y

0

—

Preemption
Dispatch
i CPU Retease—»

%
Multiple %
Ready o
Queues i

I Aging

Event Occurs

Blocked Queue

Scheduling

Priority Policies

« An OS may have a policy that decides on the priority (i.e.
which ready queue) is to be used for both newly admitted
processes and processes returning to the ready gueue.

* This may depend on:
— Inherent priority of the process
— predicted execution time
— recent request for I/O
— an aging policy.

5.7

Scheduling 5.8

Preemptive vs. Nonpreemptive

 Nonpreemptive

— If the process is in a running state, it stays in that state until it
terminates or blocks itself to wait for an I/O completion or some
OS service.

* (NO time slicing!)

 Preemptive

— The currently running process may be interrupted and moved to
the ready state by the OS.

« Examples:
- time slicing
- SRT (to be described later)

— We now consider various scheduling algorithms.

schedulingr1TSt-Come, First-Served Scheduling 5 g

e Strategy:
— As each process becomes ready, it joins the ready queue.

— When the currently running process stops, the oldest process is next
selected from the ready queue.
 FCFS is nonpreemptive.

* Pro:
— FCFS is simple and has the least overhead.
— Process starvation cannot occur.

e Con:

— FCFS tends to penalize short processes and I/0O bound processes.

» Since processes execute to completion CPU bound processes are favored
over I/O bound processes.

— Response times may be too long.
» (bad for a multiprocessor environment)

— Note: Despite the shortcomings, it is worthwhile to study FCFS as a
starting point for other more sophisticated strategies.

Scheduling 5.10

Round-Robin Scheduling

« A Preemptive Strategy:
— A clock interrupt is generated at regular intervals to limit execution times
* The interrupt defines a time slice for a process.

— When the interrupt occurs, the currently running process is preempted (placed
on the ready queue) and the next process to be dispatched is taken from the
ready queue on a FCFS basis.

« So: RRis essentially FCFS + time slicing.

* RR involves more overhead (throughput is decreased) but the CPU is
shared in a more equitable fashion.

» The time quantum should be slightly greater than the time required for a
“typical” transaction.

» Note: fraction of time that process runs is g/(g+v) where v represents
overhead time.

 Pro:
— RRis very effective in multi-user time-sharing environments and provides good
response times for short processes.
— Process starvation is not possible.

« Con:
— There is tendency to favor CPU bound processes over I/O bound processes
 the latter miss out on full time slices since they frequently block to do I/O.

Scheduling

o Strategy:

Virtual RR Scheduling

5.11

— This is the same as RR except that an auxiliary queue is used to hold
processes that have completed and 1/0 wait.

* The auxilliary queue has a higher dispatch priority than the ready queue.
» |/O bound processes now do better.

Admit

Time-Out
Ready Que
> q
> Dispatch CPU Release—
Auxilliary Queue
/0 1 Occurs /O 1 Wait
I/O Queue 1
/O 2 Occurs /O 2 Wait
I/O Queue 2
/O n Occurs /O n Wait

I/O Queue n

Scheduling Shortest Process Next Scheduling 5 1o
« The SPN Strategy:

— The process with the shortest expected process time is selected next.
 SPN is nonpreemptive.
— SPN approximates the idealized (optimal) strategy of dispatching the
process with the smallest next CPU burst.

* |f this could be done it would give us the optimal strategy in providing the
minimum average wait time.

— SPN attempts to predict the length of the next CPU burst by working
with previous behaviour.

« A common approach is to use an exponential average:
S, =al, +(1-a)S, where:
S,, = predicted CPU burst for the nth dispatch
T, = actual CPU burst for the nt" dispatch.

« Usually a may be chosen as 0.5 (perhaps a bit more).

* A high value of a will quickly reflect a rapid change in CPU bursts.

* Pro:

— SPN provides high throughput and good response times for short
processes.

« Con:
— Starvation is possible and there is no preemption.

Scheduling Effect of SPN 513

 Consider a ready gueue containing three processes with next
CPU bursts of:
12, 3, and 9.

e Scenario A:
— running the processes in a non-SPN order:

12 9 3
Response times: 12 21 24

Average Response Time = (12+21+24) / 3 =19

e Scenario B:
— running the processes in the SPN order:

3 9 12
Response times: 3 12 24

Average Response Time = (3+12+24) / 3 =13

Scheduling 5.14
Shortest Remaining Time Scheduling

(SRT)

e Strategy:
— The dispatcher chooses the process that has the shortest expected
remaining CPU burst.
* The preemptive version of SPN.

* |f a new process in the ready queue has a predicted CPU burst that is
shorter than the currently running process the dispatcher will let it run by
preempting the running process.

* Overhead is somewhat higher than SPN but the benefits are worth the
extra expense.

* Pro:
— SRT provides high throughput and good response times.

e Con:
— Process starvation is possible.

Scheddﬁnghest Response Ratio Next Scheduling 55
A Non-preemptive Strategy:

— In an attempt to minimize the normalized turnaround time (ratio of
turnaround time to service time) we choose the ready process with the
greatest response ratio RR = (w + s)/s.

* Here w is the time spent waiting for the CPU and s is the expected service
time (CPU burst).

« By picking the largest RR we help to reduce w so that the average
normalized turnaround time is also reduced.

« As for SRT and SPN the service time s is evaluated by prediction using
exponential averaging.
— Note that “aged” processes (no CPU activity for a long time) will
automatically get preference.
« HRRN is a good blend of FCFS and SPN.

 Pro:
— Throughput is high and response time is good.
— There is a good balance in the treatment of long and short processes
— Process starvation is not possible.

e Con:
— Overhead can be high.

scheduling Multilevel Feedback Scheduling 5.16

o Strategy:

— Preemptive scheduling is done with a dynamic priority mechanism
using multiple priority queues.

The idea is to automatically separate processes with different CPU-burst
lengths.

A process starts at a particular queue level.

Each time a process is preempted by the end of a time slice it goes to a
gueue with a priority one level lower than the one just used.

Within each queue FCFS is used except for the lowest level queue which
uses round-robin.

The effect is to penalize jobs that have longer CPU-bursts since short
jobs complete before going into lower level queues.

Short burst processes (I/O bound and interactive) tend to stay in the
higher queues.

The quantum duration may be longer for successively lower queues.

Does not depend on CPU burst prediction as does SPN, SRT, and
HRRN.

Scheduling 517

Multilevel Feedback Scheduling (cont)

Ready Queues: CPU Release
Admit > 0 Y ESR——.
Dispatch SQ 1
1
} ’ ..
to
RQ 2
5 Q
» > ..
to
- RQ 3 l
n
4_{ N
from RQ n-1 via CPU

Not Shown: paths leaving the CPU going to the wait event queues.
After an event occurs, the process goes back
to the same queue.

Scheduling Multilevel Feedback Scheduling (cont) °*

Pro:

— Feedback provides a simple yet effective strategy.
— It can be modified for various needs (see the NT approach later).

con:

— 1/O-bound processes tend to be favoured and starvation is possible.

To avoid starvation we can promote older processes to a higher-priority
gueue.

Design aspects:

— The multilevel feedback scheduling strategy covers a variety of
different possibilities specified by the following parameters:

the number of queues
the scheduling algorithm used for each queue
the policy used to upgrade a process in order to avoid starvation

the policy used to determine the starting queue for a process having its
first CPU burst.

the policy used for demotion in the queues.

	Motivation
	Process State Transitions�and Scheduling
	Queuing Diagram for Scheduling
	Scheduling Criteria
	Scheduling Criteria (cont.)
	Process Priorities
	Priority Policies
	Preemptive vs. Nonpreemptive
	First-Come, First-Served Scheduling
	Round-Robin Scheduling
	Virtual RR Scheduling
	 Shortest Process Next Scheduling
	Effect of SPN
	Shortest Remaining Time Scheduling�(SRT)
	Highest Response Ratio Next Scheduling
	Multilevel Feedback Scheduling
	Multilevel Feedback Scheduling (cont.)
	Multilevel Feedback Scheduling (cont.)

