
CS350 Operating Systems Spring 2014

Assignment 2a

In this assignment, you are asked to implement several OS/161 process-related system calls. Before you
start implementing system calls, you should review and understand those parts of the OS/161 kernel that
you will be modifying.

1 Code Review

This section gives a brief overview of some parts of the kernel that you should become familiar with.

1.1 kern/syscall

This directory contains the files that are responsible for loading and running user-level programs, as well as
basic and stub implementations of a few system call handlers.

proc syscalls.c: This file is intended to hold the handlers for process-related system calls, including the
calls that you are implementing for this assignment. Currently, it contains a partial implementation of
a handler for exit() and stub handlers for getpid() and waitpid().

runprogram.c: This file contains the implementation of the kernel’s runprogram command, which can be
invoked from the kernel menu. The runprogram command is used to launch the first process run by
the kernel. Typically, this process will be the ancestor of all other processes in the system.

1.2 kern/arch/mips/

This directory contains machine-specific code for basic kernel functions, such as handling system calls,
exceptions and interrupts, context switches, and virtual memory.

locore/trap.c: This file contains the function mips trap(), which is the first kernel C function that is
called after an exception, system call, or interrupt returns control to the kernel. (mips trap() gets
called by the assembly language exception handler.)

syscall/syscall.c: This file contains the system call dispatcher function, called syscall(). This function,
which is invoked by mips trap() determines which kind of system call has occured, and calls the
appropriate handler for that type of system call. As provided to you, syscall() will properly invoke
the handlers for a few system calls. However, you will need to modify this function to invoke your
handler for fork(). In this file, you will also find a stub function called enter forked process(). This
is intended to be the function that is used to cause a newly-forked process to switch to user-mode for
the first time. When you implement enter forked process(), you will want to call mips usermode()

(from locore/trap.c) to actually cause the switch from kernel mode to user mode.

1.3 kern/include

The kern/include directory contains the include files that the kernel needs. The kern subdirectory contains
include files that are visible not only to the operating system itself, but also to user-level programs. (Think
about why it’s named “kern” and where the files end up when installed.)

1.4 kern/vm

The kern/vm directory contains the machine-independent part of the kernel’s virtual memory implementa-
tion. Although you do not need to modify the virtual memory implementation for this assignment, some
functions implemented here are relevant to the assignment.

1

copyinout.c: This file contains functions, such as copyin() and copyout for moving data between kernel
space and user space. See the partial implementations of the handlers for the write() and waitpid()

system calls for examples of how these functions can be used.

1.5 In user

The user directory contains all of the user level applications, which can be used to test OS/161. Don’t forget
that the user level applications are built and installed separately from the kernel. All of the user programs
can be built by running bmake and then bmake install in the top-level diretory (os161-1.99).

2 Implementation Requirements

All code changes for this assignment should be enclosed in #if OPT A2 statements, in much the same way
that you used #if OPT A1 for Assignment 1:

#if OPT_A2

// code you created or modified for ASST2 goes here

#else

// old (pre-A2) version of the code goes here,

// and is ignored by the compiler when you compile ASST2

// the ‘‘else’’ part is optional and can be left

// out if you are just inserting new code for ASST2

#endif /* OPT_A2 */

For this to work, you must add #include "opt-A2.h" at the top of any file for which you make changes for
this assignment.

By default, any code changes that you made for Assignment 1 and which are wrapped with #if OPT A1

will also be included in your build when you compile for Assignment 2.
For this assignment, you are expected to implement the following OS/161 system calls:

• fork

• getpid

• waitpid

• exit

fork enables multiprogramming and makes OS/161 much more useful. exit and waitpid are closely
related to each other, since exit allows the terminating process to specify an exit status code, and waitpid

allows another process to obtain that code. You are not required to implement the WAIT ANY, WAIT MYPGRP,
WNOHANG, and WUNTRACED flags for waitpid() - see kern/include/kern/wait.h.

To help get you started, there is a partially-implemented handler for exit already in place, as well as
stub implementatations of handlers for getpid and waitpid. You will need to complete the implementations
of these handlers, and also create and implement a handler for fork.

There is a man (manual) page for each OS/161 system call. These manual pages describe the expected
behaviour of the system calls and specify the values expected to be returned by the system calls, including
the error numbers that they may return. You should consider these manual pages to be part of

the specification of this assignment, since they describe the way that that system calls that

you are implementing are expected to behave. The system call man pages are located in the OS/161
source tree under os161-1.99/man/syscall. They are also available on-line through the course web page.

Your system call implementations should correctly and gracefully handle error conditions, and properly
return the error codes as described on the man pages. This is because application programs, including those
used to test your kernel for this assignment, depend on the behaviour of the system calls as specified in the
man pages. Under no circumstances should an incorrect system call parameter cause your

kernel to crash.

2

Integer codes for system calls are listed in kern/include/kern/syscall.h. The file user/include/unistd.h
contains the user-level function prototypes for OS/161 system calls. These describe how a system call is made
from within a user-level application. The file kern/include/syscall.h contains the kernel’s prototypes for
its internal system call handling functions. You will find prototypes for the handlers for waitpid, exit and
getpid there. Don’t forget to add a prototype for your new fork() handler function to this file.

2.1 Process IDs

A PID, or process ID, is a unique number that identifies a process. You should carefully review the manual
pages for fork, exit, and waitpid to understand how PIDs are expected to work.

For the purposes of this assignment, you should ensure that a process can use waitpid to obtain the
exit status of any of its children, and that a process may not use waitpid to obtain the exit status of any
other processes. In the terminology used on the waitpid manual page, you should assume that a process is
“interested” in its children, but is not interested in any other processes.

2.2 Silence is Golden

Your final, submitted kernel should not produce any output other than the normal boot and shutdown
messages and the kernel menu prompt. We enourage you to use the DEBUG mechanism to generate kernel
debugging output while you are testing your work, but make sure that all such debugging messages are
turned off in the version of the kernel that you submit.

If your kernel produces lots of spurious output, it is more difficult for us to review the output produced
by the user-level programs that we test with. If your kernel produces output other than the normal boot
and shutdown messages, your assignment may be penalized.

3 Testing

The kernel’s runprogram command, which was described in Section 1.1, will allow you launch a process to
run a user-level application program. This is handy for testing that your system calls work. Without making
any modifications to the base OS/161 code, you should be able to run the testbin/palin user program,
which is a simple palindrome tester. testbin/palin uses only write to the console and exit, both of
which are partially implemented in the OS/161 base code.

OS/161 includes a number of application programs that you can use. The user/bin and user/sbin

directories contain a number of standard utility programs, such as a command shell. In addition, the
user/testbin and user/uw-testbin directories contain a variety of programs that can be used to conduct
some simple tests of your OS/161 kernel. The A2 hints (on-line) will identify some specific programs that
we will be using to test your submission. Any of these programs can be launched directly from the kernel
using the runprogram command.

4 Configuring and Building

Before you do any coding for Assignment 2a, you will need to reconfigure your kernel for this assignment. Fol-
low the same procedure that you used to configure for Assignment 1, but use the Assignment 2 configuration
file instead:

% cd cs350-os161/os161-1.99/kern/conf

% ./config ASST2

% cd ../compile/ASST2

% bmake depend

% bmake

% bmake install

This will configure, build and install your Assignment 2a kernel. Note that you build your kernel in
kern/compile/ASST2, not kern/compile/ASST1.

3

To build the OS/161 user-level applications, you need to run bmake in the top-level directory of the
OS/161 source tree:

% cd cs350-os161/os161-1.99

% bmake

% bmake install

Generally, you should not have to rebuild those applications every time you build a new kernel. However,
there are certain header files, e.g, in kern/include/kern that are used by the kernel and by the user-level
application programs. In the unlikely event that you make changes to these files, you must rebuild the
user-level code.

It is always OK to rebuild the user-level applications. If you are getting any weird, unexpected behaviour
from those applications, it is a good idea to rebuild them just to be on the safe side.

More importantly, make sure to completely recompile your kernel and user-level programs

just before you submit the assignment. A common problem is not noticing that an erroneous change
in header files that are shared between the kernel and user programs prevents the user programs from
compiling. If we cannot compile the user-level applications, we cannot test your code!

5 What to Submit

You should submit your kernel source code using cs350 submit command, as you did for Assignment 1. It
is important that you use the cs350 submit command - do not use the regular submit command directly.

Assuming that you followed the standard OS/161 setup instructions, your OS/161 source code will be
located in $HOME/cs350-os161/os161-1.99. To submit your work, you should run

/u/cs350/bin/cs350_submit 2a

in the directory $HOME/cs350-os161/ This will package up your OS/161 kernel code and submit it to the
course account.

Important: The cs350 submit script packages and submits everything under the os161-1.99/kern

directory, except for the subtree os161-1.99/kern/compile. You are permitted to make changes to the
OS/161 source code outside the kern subdirectory. For example, you might create a new test program under
user. However, such changes will not be submitted when you run cs350 submit. Only your kernel code,
under os161-1.99/kern, will be submitted.

You can submit multiple times, and only your last submission will be used. Just be careful that your
submitted version works and that you submit well before the deadline.

4

