
File Systems
key concepts: file, directory, link, open/close, descriptor, read,

write, seek, file naming, block, i-node, crash consistency,
journaling

Lesley Istead

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2019

1 / 40

Files and File Systems

files: persistent, named data objects

data consists of a sequence of numbered bytes
file may change size over time
file has associated meta-data (e.g., type, timestamp, access
controls)

file systems: the data structures and algorithms used to
store, retrieve, and access files

logical file system: high-level API, what a user sees
virtual file system: abstraction of lower level file systems,
presents multiple different underlying file systems to the user
as one
physical file system: how files are actually stored on physical
media

2 / 40

File Interface: Basics

open

open returns a file identifier (or handle or descriptor), which
is used in subsequent operations to identify the file.
other operations (e.g., read, write) require file descriptor as a
parameter

close

kernel tracks while file descriptors are currently valid for each
process
close invalidates a valid file descriptor

read, write, seek

read copies data from a file into a virtual address space
write copies data from a virtual address space into a file
seek enables non-sequential reading/writing

get/set file meta-data, e.g., Unix fstat, chmod, ls -la

3 / 40

File Position and Seeks

each file descriptor (open file) has an associated file position
the position starts at byte 0 when the file is opened

read and write operations

start from the current file position
update the current file position as bytes are read/written

this makes sequential file I/O easy for an application to
request

seeks (lseek) are used for achieve non-sequential file I/O

lseek changes the file position associated with a descriptor
next read or write from that descriptor will use the new
position

4 / 40

Sequential File Reading Example

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {
read(f,(void *)buf,512);

}
close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time.

5 / 40

File Reading Example Using Seek

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=1; i<=100; i++) {
lseek(f,(100-i)*512,SEEK_SET);

read(f,(void *)buf,512);

}
close(f);

Read the first 100∗512 bytes of a file, 512 bytes at a time, in reverse
order.

lseek does not modify the file. It also does not check if the new file
position is valid (i.e., in the file). It will not return an error or throw
an exception if the position is invalid. However, the subsequent read
or write operation will.

6 / 40

Directories and File Names

A directory maps file names (strings) to i-numbers
an i-number is a unique (within a file system) identifier for a
file or directory
given an i-number, the file system can find the data and
meta-data for the file

Directories provide a way for applications to group related files
Since directories can be nested, a filesystem’s directories can
be viewed as a tree, with a single root directory.
In a directory tree, files are leaves
Files may be identified by pathnames, which describe a path
through the directory tree from the root directory to the file,
e.g.:

/home/user/courses/cs350/notes/filesys.pdf

Directories also have pathnames
Applications refer to files using pathnames, not i-numbers

Only the kernel is permitted to edit directories. Why?

7 / 40

Hierarchical Namespace Example

= directory

= file

Key

2

312
14524

654
425 93 67 147 149

334 12

234 = i−number

bin docs

b.doc

a.txt

zam

testprogprivate

bar

foo

misc

temp

/docs/b.doc is the path for file 149.

8 / 40

Links

a hard link is an association between a name (string) and an
i-number

each entry in a directory is a hard link

when a file is created, so is a hard link to that file
open(/foo/misc/biz,O CREAT|O TRUNC)

this creates a new file if a file called /foo/misc/biz does not
already exist
it also creates a hard link to the file in the directory /foo/misc

Once a file is created, additional hard links can be made to
it.

example: link(/docs/a.txt,/foo/myA) creates a new hard
link myA in directory /foo. The link refers to the i-number of
file /docs/a.txt, which must exist.

linking to an existing file creates a new pathname for that file
each file has a unique i-number, but may have multiple
pathnames

Not possible to link to a directory (to avoid cycles)

9 / 40

Hierarchical Namespace Example

= directory

= file

Key

2

312
14524

654
425 93 67 147 149

334 12

234 = i−number

myA

bin docs

b.doc

a.txt

zam

testprogprivate

foo

misc

bar

temp

/foo/myA and /docs/a.txt are two different paths to the same file,
number 147.

10 / 40

Unlinking

hard links can be removed:

unlink(/docs/b.doc)

this removes the link b.doc from the directory /docs

when the last hard link to a file is removed, the file is also
removed

since there are no links to the file, it has no pathname, and
can no longer be opened

11 / 40

Multiple File Systems

it is not uncommon for a system to have multiple file systems

some kind of global file namespace is required

two examples:
DOS/Windows: use two-part file names: file system name,
pathname within file system

example: C:\user\cs350\schedule.txt

Unix: create single hierarchical namespace that combines the
namespaces of two file systems

Unix mount system call does this

mounting does not make two file systems into one file system

it merely creates a single, hierarchical namespace that
combines the namespaces of two file systems
the new namespace is temporary - it exists only until the file
system is unmounted

12 / 40

Unix mount Example

a

q

r
x

g

a

q

r
x

g

"root" file system file system X

result of mount (file system X, /x/a)

x
y

z

a
b

ck la b

x
y

z

a
b

ck la b

13 / 40

File System Implementation

what needs to be stored persistently?

file data
file meta-data
directories and links
file system meta-data

non-persistent information
per process open file descriptor table

file handle
file position

system wide:

open file table
cached copies of persistent data

14 / 40

File System Example

Use an extremely small disk as an example:

256 KB disk!
Most disks have a sector size of 512 bytes

Memory is usually byte addressable
Disk is usually “sector addressable”

512 total sectors on this disk

Group every 8 consecutive sectors into a block

Better spatial locality (fewer seeks)
Reduces the number of block pointers (we’ll see what this
means soon)
4 KB block is a convenient size for demand paging
64 total blocks on this disk

15 / 40

VSFS: Very Simple File System (1 of 5)

Most of the blocks should be for storing user data (last 56
blocks)

16 / 40

VSFS: Very Simple File System (2 of 5)

Need some way to map files to data blocks

Create an array of i-nodes, where each i-node contains the
meta-data for a file

The index into the array is the file’s index number (i-number)

Assume each i-node is 256 bytes, and we dedicate 5 blocks for
i-nodes

This allows for 80 total i-nodes/files

17 / 40

VSFS: Very Simple File System (3 of 5)

We also need to know which i-nodes and blocks are unused

Many ways of doing this:

In VSFS, we use a bitmap for each (i, d)
Can also use a free list instead of a bitmap

A block size of 4 KB means we can track 32K i-nodes and
32K blocks, since one bit is used to track each i-node or block

This is far more than we actually need for this disk

18 / 40

VSFS: Very Simple File System (4 of 5)

Reserve the first block as the superblock

A superblock contains meta-information about the entire file
system

e.g., how many i-nodes and blocks are in the system, where
the i-node table begins, etc.

19 / 40

VSFS: Very Simple File System (5 of 5)

20 / 40

i-nodes

An i-node is a fixed size index structure that holds both file
meta-data and a small number of pointers to data blocks

i-node fields may include:

file type
file permissions
file length
number of file blocks
time of last file access
time of last i-node update, last file update
number of hard links to this file
direct data block pointers
single, double, and triple indirect data block pointers

21 / 40

i-node Diagram

attribute values

single indirect

direct
direct
direct

data blocks

double indirect

triple indirect

indirect blocks

i−node (not to scale!)

22 / 40

VSFS: i-node

Assume disk blocks can be referenced based on a 4 byte
address

232 blocks, 4 KB blocks
Maximum disk size is 16 TB

In VSFS, an i-node is 256 bytes

Assume there is enough room for 12 direct pointers to blocks
Each pointer points to a different block for storing user data
Pointers are ordered: first pointer points to the first block in
the file, etc.

What is the maximum file size if we only have direct pointers?

12 * 4 KB = 48 KB

Great for small files (which are common)

Not so great if you want to store big files

23 / 40

VSFS: Indirect Blocks

In addition to 12 direct pointers, we can also introduce an
indirect pointer

An indirect pointer points to a block full of direct pointers

4 KB block of direct pointers = 1024 pointers

Maximum file size is: (12 + 1024) * 4 KB = 4144 KB

This is more than enough for any file that can fit on our tiny
256KB disk, but what if the disk was larger?

Add a double indirect pointer
Points to a 4 KB block of indirect pointers
(12 + 1024 + 1024 * 1024) * 4 KB
Just over 4 GB in size (is this enough?)

Still not enough? use a triple indirect pointer

24 / 40

Reading from a File (/foo/bar)

First, the root i-node is read.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

root’s i-node will provide the position of root’s data, which is where
the links are stored.

25 / 40

Reading from a File (/foo/bar)

root’s data is read to find the link to foo.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read

In this example, we assume that the directory links fit into a single
block.

26 / 40

Reading from a File (/foo/bar)

foo’s i-node is read next, providing the location of foo’s data.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

27 / 40

Reading from a File (/foo/bar)

foo’s data is read to find bar’s link.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

read

Again, for this example we assume that the links contained in direc-
tory foo fit into a single block. This may not always be true.

28 / 40

Reading from a File (/foo/bar)

bar’s i-node is read

1 the permissions are checked

2 a file descriptor is returned and added to the processes’s file
descriptor table

3 the file is added to the kernel’s list of open files

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

read
read

The file is now open and ready for reads and writes. The position of
the file is byte 0. Opening this file required 5 disk reads!

29 / 40

Reading from a File (/foo/bar)

Reading data from /foo/bar, one block at a time.

1 bar’s i-node is read

2 a pointer to the correct data block is found

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

read
read

read() read

If bar’s i-node is not in the i-node cache, it must be read from disk.

30 / 40

Reading from a File (/foo/bar)

1 the data block for /foo/bar is read

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

read
read

read() read
read

31 / 40

Reading from a File (/foo/bar)

1 bar’s i-node is written to update the access time

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

read
read

read() read
read

write

32 / 40

Reading from a File (/foo/bar)

Two more data blocks are read.
data inode root foo bar root foo bar bar bar

operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read

read
read

read() read
read

write
read() read

read
write

read() read
read

write

Even if the user wants a single byte out of the middle of a block, the
entire block must be read. Disks typically do not permit byte-based
addressing, only block or sector addressing.

33 / 40

Creating a File (/foo/bar)
data inode root foo bar root foo bar bar bar

operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
create(bar) read

read
read

read
read
write

write
read
write

write
write() read

read
write

write
write

write() read
read
write

write
write

write() read
read
write

write
write

When writing a partial block, that block must be read first. When
writing an entire block, no read is required.

34 / 40

Chaining

VSFS uses a per-file index (direct and indirect pointers) to
access blocks

Two alternative approaches:
Chaining:

Each block includes a pointer to the next block

External chaining:

The chain is kept as an external structure
Microsoft’s File Allocation Table (FAT) uses external chaining

35 / 40

Chaining

Directory table contains the name of the file, and each file’s
starting block

Acceptable for sequential access, very slow for random access
(why?)

36 / 40

External Chaining

Introduces a special file access table that specifies all of the
file chains

external chain

(file access table)

37 / 40

File System Design

File system parameters:

How many i-nodes should a file system have?
How many direct and indirect blocks should an i-node have?
What is the “right” block size?

For a general purpose file system, design it to be efficient for
the common case

most files are small, 2KB
average file size growing
on average, 100 thousand files
typically small directories (contain few files)
even as disks grow large, the average file system usage is 50%

What about exceptional cases?
What if the files were mostly large, 50GB minimum?
What if each file is less than 1KB?

38 / 40

Problems Caused by Failures

a single logical file system operation may require several disk
I/O operations

example: deleting a file

remove entry from directory
remove file index (i-node) from i-node table
mark file’s data blocks free in free space index

what if, because of a failure, some but not all of these
changes are reflected on the disk?

system failure will destroy in-memory file system structures

persistent structures should be crash consistent, i.e., should
be consistent when system restarts after a failure

39 / 40

Fault Tolerance

special-purpose consistency checkers (e.g., Unix fsck in
Berkeley FFS, Linux ext2)

runs after a crash, before normal operations resume
find and attempt to repair inconsistent file system data
structures, e.g.:

file with no directory entry
free space that is not marked as free

journaling (e.g., Veritas, NTFS, Linux ext3), write-ahead
logging

record file system meta-data changes in a journal (log), so that
sequences of changes can be written to disk in a single
operation
after changes have been journaled, update the disk data
structures (write-ahead logging)
after a failure, redo journaled updates in case they were not
done before the failure

40 / 40

