
Scheduling
key concepts: round robin, shortest job first, MLFQ,

multi-core scheduling, cache affinity, load balancing

Lesley Istead

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2019

1 / 26

Simple Scheduling Model

We are given a set of jobs to schedule.

Only one job can run at a time.

For each job, we are given

job arrival time (ai )
job run time (ri )

For each job, we define

response time: time between the job’s arrival and when the
job starts to run
turnaround time: time between the job’s arrival and when the
job finishes running.

We must decide when each job should run, to achieve some
goal, e.g., minimize average turnaround time, or minimize
average response time.

2 / 26



First Come, First Served

jobs run in order of arrival
simple, avoids starvation

time

J4

J2

J1

0 4 8 12 16 20

J3

Job J1 J2 J3 J4

arrival (ai ) 0 0 0 5

run time (ri ) 5 8 3 2

3 / 26

Round Robin

preemptive FCFC
OS/161’s scheduler

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai ) 0 0 0 5

run time (ri ) 5 8 3 2

4 / 26



Shortest Job First

run jobs in increasing order of runtime
minimizes average turnaround time
starvation is possible

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai ) 0 0 0 5
run time (ri ) 5 8 3 2

5 / 26

Shortest Remaining Time First

preemptive variant of SJF; arriving jobs preempt running job
select one with shortest remaining time
starvation still possible

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai ) 0 0 0 5
run time (ri ) 5 8 3 2

6 / 26



CPU Scheduling

In CPU scheduling, the “jobs” to be scheduled are the
threads.

CPU scheduling typically differs from the simple scheduling
model:

the run times of threads are normally not known
threads are sometimes not runnable: when they are blocked
threads may have different priorities

The objective of the scheduler is normally to achieve a
balance between

responsiveness (ensure that threads get to run regularly),
fairness,
efficiency

How would FCFS, Round Robin, SJF, and SRTF handle blocked
threads? Priorities?

7 / 26

Multi-level Feedback Queues

the most commonly used scheduling algorithm in
modern times

objective: good responsiveness for interactive threads,
non-interactive threads make as much progress as possible

key idea: interactive threads are frequently blocked, waiting
for user input, packets, etc.

approach: given higher priority to interactive threads, so that
they run whenever they are ready.

problem: how to determine which threads are interactive and
which are not?

MLFQ is used in Microsoft Windows, Apple macOS, Sun Solaris,
and many more. It was used in Linux, but no longer is.

8 / 26



MLFQ Algorithm

...

Qn, qn

Qn-1, qn-1

Qn-2, qn-2

Q1, q1

highest priority

lowest priority

shortest quantum

longest quantum

on preempt

n round-robin ready queues where the priority of
Qi > Qj if i > j

threads in Qi use quantum qi and qi ≤ qj if i > j

scheduler selects a thread from the highest
priority queue to run

threads in Qn−1 are only selected if Qn is empty

preempted threads are put onto the back of the
next lower-priority queue

a thread from Qn is preempted, it is pushed
onto Qn−1

when a thread wakes after blocking, it is put
onto the highest-priority queue

Since interactive threads tend to block frequently, they will ”live” in
higher-priority queues while non-interactive threads sift down to the
bottom.

9 / 26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

When do threads in Q1 run if Q3 is never empty?
To prevent starvation, all threads are periodically placed in the
highest-priority queue.

10 / 26



3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1 T2

Two threads, T1 and T2, start in Q3.

11 / 26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1T2

T1 is selected to run.

12 / 26



3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T2

T1 is preempted and pushed onto the back of Q2. T2 is selected to
run.

13 / 26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T2T3

While T2 is running a new thread, T3, arrives.

14 / 26



3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T3

T2 terminates. T3 is selected.

15 / 26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T3

T3 blocks. T1 is selected.

16 / 26



3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T3

T1 is preempted, it is pushed onto Q1.

17 / 26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T3

T1 is selected.

18 / 26



3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T3

T3 is woken by T1 causing T1 to be preempted. Many variants
of MLFQ will preempt low-priority threads when a thread wakes to
ensure a fast response to an event.

19 / 26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleep

w
ak

e 
up

run

run

run

preempt

preempt

preempt

T1

T3

T3 is selected.

20 / 26



Linux Completely Fair Scheduler (CFS) - Main Ideas

each thread can be assigned a weight

the goal of the scheduler is to ensure that each thread gets a
“share” of the processor in proportion to its weight

basic operation
track the “virtual” runtime of each runnable thread
always run the thread with the lowest virtual runtime

virtual runtime is actual runtime adjusted by the thread
weights

suppose wi is the weight of the ith thread

actual runtime of ith thread is multiplied by
∑

j wj

wi

virtual runtime advances slowly for threads with high weights,
quickly for threads with low weights

In MLFQ the quantum depended on the thread priority. In CFS, the
quantum is the same for all threads and priorities.

21 / 26

CFS Example

Suppose the total weight of all threads in the system is 50 and the
quantum is 5.

Time Thread Weight Actual Runtime Virtual Runtime

t 1 25 5
2 20 5
3 5 5

t + 5 1 25
2 20
3 5

Which thread is selected at t? Which thread at t + 5?

22 / 26



CFS Example

Suppose the total weight of all threads in the system is 50 and the
quantum is 5.

Time Thread Weight Actual Runtime Virtual Runtime

t + 5 1 25 5 5 ∗ 50/25 = 10
2 20 5 5 ∗ 50/20 = 12.5
3 5 5 5 ∗ 50/5 = 50

T1 is selected

t + 5 1 25 10 10 ∗ 50/25 = 20
2 20 5 12.5
3 5 5 50

T2 is selected
Which thread is selected at t? Which thread at t + 5?

23 / 26

Scheduling on Multi-Core Processors

core

core

core

core

core

core

core

core

per core ready queue vs. shared ready queue

Which offers better performance? Which one scales better?

24 / 26



Scalability and Cache Affinity

Contention and Scalability

access to shared ready queue is a critical section, mutual
exclusion needed
as number of cores grows, contention for ready queue becomes
a problem

per core design scales to a larger number of cores

CPU cache affinity

as thread runs, data it accesses is loaded into CPU cache(s)
moving the thread to another core means data must be
reloaded into that core’s caches
as thread runs, it acquires an affinity for one core because of
the cached data
per core design benefits from affinity by keeping threads on the
same core
shared queue design does not

25 / 26

Load Balancing

in per-core design, queues may have different lengths

this results in load imbalance across the cores

cores may be idle while others are busy
threads on lightly loaded cores get more CPU time than
threads on heavily loaded cores

not an issue in shared queue design

per-core designs typically need some mechanism for thread
migration to address load imbalances

migration means moving threads from heavily loaded cores to
lightly loaded cores

26 / 26


