Synchronization

critical sections, mutual exclusion, test-and-set,

spinlocks, blocking and blocking locks, semaphores, condition
variables, deadlocks

Lesley Istead

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2019

1/56



Thread Synchronization

m All threads in a concurrent program share access to the
program’s global variables and the heap.

m The part of a concurrent program in which a shared object is
accessed is called a critical section.

m What happens if several threads try to access the same global
variable or heap object at the same time?

2 /56



Critical Section Example

/* Note the use of volatile; revisit later */
int volatile total = 0;

void add() { void sub() {
int i; int i;
for (i=0; i<N; i++) { for (i=0; i<N; i++) {
total++; total--;

} }

If one thread executes add and another executes sub what is the
value of total when they have finished?

3/56



Critical Section Example (assembly detail)

/* Note the use of volatile */
int volatile total = 0;

void add() { void sub() {
loadaddr R8 total loadaddr R10 total
for (i=0; i<N; i++) { for (i=0; i<N; i++) {
1w R9 0(R8) lw R11 0(R10)
add R9 1 sub R11 1
sw R9 0(R8) sw R11 0(R10)
} ¥
} }

4/56



Critical Section Example (Trace 1)

Thread 1 Thread 2
loadaddr R8 total
lw R9 0(R8) R9=0

add R9 1 R9=1
sw R9 0(R8) total=1
<INTERRUPT>
loadaddr R10 total
lw R11 0(R10) R11=1
sub R11 1 R11=0
sw R11 0(R10)  total=0
[ One possible order of execution. Final value of total is 0. ]

5/56



Critical Section Example (Trace 2)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT and context switch>

loadaddr R10 total
lw R11 0(R10) R11=0
sub R11 1 R11=-1
sw R11 0(R10) total=-1

<INTERRUPT and context switch>
sw R9 O0(R8) total=1

[ One possible order of execution. Final value of total is 1. ]

6/56



Critical Section Example (Trace 3)

Thread 1

loadaddr R8 total
lw R9 0(R8) R9=0
add R9 1 R9=1
sw R9 O(R8) total=1

Thread 2

loadaddr R10 total

lw R11 0(R10) R11=0
sub R11 1 Ri1=-1

sw R11 0(R10) total=-1

Final value of total is -1.

Another possible order of execution, this time on two processors.

7/56



Race Condition

A race condition is when the program result depends on the
order of execution. Race conditions occur when multiple threads
are reading and writing the same memory at the same time.
Sources of race conditions:

implementation

.. more sources of race conditions to come!

8/56



Is there a race condition?

int list_remove front(list *1p) {
int num;
list_element *element;
assert ('is_empty(1lp));
element = lp->first;
num = lp->first->item;
if (lp->first == 1lp->last) {
lp->first = 1lp->last = NULL;
} else {
lp—>first = element->next;
}
lp—>num_in_list--;
free(element);
return num;

9/56



Is there a race condition?

void list_append(list *1lp, int new_ item) {
list_element *element = malloc(sizeof(list_element));
element->item = new_item
assert(!is_in 1ist(lp, new_item));
if (is_empty(1lp)) {
lp->first = element; lp->last = element;
} else {
lp->last->next = element; lp->last = element;

}

lp—>num_in_list++;

10 /56



Tips for identifying race conditions

m find the critical sections
m inspect each variable; is it possible for multiple threads to
read/write it at the same time?
m constants and memory that all threads only read, do not
cause race conditions

What next?

After identifying the critical sections, how can you prevent race con-
ditions?

11 /56



Enforcing Mutual Exclusion With Locks

int volatile total = 0;
/* lock for total: false => free, true => locked */
bool volatile total_lock = false; // false means unlocked

void add() { void sub() {
int i; int i;
for (i=0; i<N; i++) { for (i=0; i<N; i++) {
Acquire(&total_lock); Acquire(&total_lock);

total++; total--;

Release(&total_lock); Release(&total_lock);
} }

} }

Acquire/Release must ensure that only one thread at a time can
hold the lock, even if both attempt to Acquire at the same time. If
a thread cannot Acquire the lock immediately, it must wait until the
lock is available.

Locks provide mutual exclusion and are often referred to as a mutex.

12 /56



Lock Aquire and Release

Acquire(bool *lock) {

while (*lock == true) ; /* spin until lock is free */

*lock = true;

}

Release(book *lock) {
*lock = false;

}

/* grab the lock */

/* give up the lock */

[ Does this work?

13 /56



Lock Aquire and Release

Acquire(bool *lock) {

while (*lock == true) ; /* spin until lock is free */

*lock = true;

}

Release(book *lock) {
*lock = false;

}

/* grab the lock */

/* give up the lock */

It does not! Why?

How could you fix it?

14 /56



Hardware-Specific Synchronization Instructions

m provide a way to implement atomic test-and-set for
synchronization primitives like locks

m example: the atomic x86 (and x64) xchg instruction:
xchg src,addri

where src is a register, and addr is a memory address. Swaps
the values stored in src and addr.

m logical behavior of xchg is an atomic function that behaves
like this:

Xchg(value,addr) {
old = *addr;
*addr = value;
return(old);

}

15 /56



x86 - Lock Aquire and Release with Xchg

Acquire(bool *lock) {
while (Xchg(true,lock) == true) ;
}

Release(bool *lock) {
xlock = false; /* give up the lock */
}

If Xchg returns true, the lock was already set, and we must continue
to loop. If Xchg returns false, then the lock was free, and we have
now acquired it.

This construct is known as a spin lock, since a thread busy-waits
(loops) in Acquire until the lock is free.

16 / 56



ARM Synchronization Instructions

m exclusive load (LDREX) and store (STREX) operations
m LDREX and STREX act as a barrier; must be used together
m LDREX loads a value from address addr
m STREX will attempt to store a value to address addr
m STREX will fail to store value at address addr if addr was
touched between the LDREX and STREX

LDREX and STREX

STREX may fail even if the distance between LDREX and STREX is
small, but should succeed after a few attempts. It is recommended
to place these instructions close together (128bits).

17 /56



Lock Acquire with LDREX and STREX

ARMTestAndSet (addr, value) {

}

tmp = LDREX addr // load value

result = STREX value, addr // store new value

if (result == SUCCEED) return tmp
return TRUE

Acquire(bool *lock) {

}

while( ARMTestAndSet(lock, true) == true

) {}s

ARMTestAndSet returns TRUE if the lock is already owned, OR,
if STREX fails, so that we keep trying to acquire the lock. ARMTe-
stAndSet ONLY returns FALSE if the lock is available, AND, if
STREX succeeds.

18 /56



MIPS Synchronization Instructions

m similar to ARM, two instructions are used; 11 and sc
m 11, load linked, load value at address addr
m sc, store conditional, store new value at addr if the value at
addr has not changed since 11

sC

returns SUCCESS if the value stored at the address has not
changed since 11. The value stored at the address can be any 32bit
value. sc does not check what that value at the address is, it only
checks if it has changed.

19 /56



Lock Acquire with 11 and sc

MIPSTestAndSet (addr, value) {
tmp = 11 addr // load value
result = sc addr, value // store conditionally
if ( result == SUCCEED ) return tmp
return TRUE

Acquire(bool *lock) {
while( MIPSTestAndSet(lock, true) == true ) {};

Initial Lock Value Lock Value at 11  Lock Value at sc  Lock Value after sc  sc Returns  Lock State

FALSE FALSE FALSE TRUE SUCCEED  own lock

FALSE FALSE TRUE TRUE FAIL keep spinning, no lock
TRUE TRUE TRUE TRUE SUCCEED  keep spinning, no lock
TRUE TRUE FALSE FALSE FAIL keep spinning, no lock

20 /56



Spinlocks in OS/161

A spinlock is a lock that “spins”, repeatedly testing lock
availability in a loop until the lock is available. Threads actively
use the CPU while they “wait” for the lock. In OS/161, spinlocks
are already defined.

struct spinlock {
volatile spinlock_data_t 1lk_lock;
struct cpu *1lk_holder;

3

void spinlock_init(struct spinlock *1k}
void spinlock_acquire(struct spinlock *1k);
void spinlock_release(struct spinlock *1k);

spinlock_acquire calls spinlock_data_testandset in a loop until
the lock is acquired.

21/56



0S/161 spinlock acquire

/* return value O indicates lock was acquired */
spinlock_data_testandset(volatile spinlock_data_t *sd)

{
spinlock_data_t x,y;
y=1;
__asm volatile(
/* assembly instructions x = %0, y = %1, sd = %2 */
".set push;" /* save assembler mode */
".set mips32;" /* allow MIPS32 instructions */
".set volatile;" /* avoid unwanted optimization */
"11 %0, 0(%2);" /*  x = *sd */
"sc %1, 0(%2);" /* *sd = y; y = success? */
".set pop" /* restore assembler mode */
"=r" (x), "+r" (y) : "r" (sd)); /* outputs : inputs */
if (y == 0) { return 1; }
return x;
}

C Inline Assembly

“ ”

=r" — write only, stored in a register
“+r" — read and write, stored in a register

won

r" — input, stored in a register

22 /56



0S/161 Locks

m In addition to spinlocks, OS/161 also has locks.
m Like spinlocks, locks are used to enforce mutual exclusion.

struct lock *mylock = lock_create("LockName");

lock-aquire(mylock) ;
critical section /* e.g., call to list_remove_front */

lock-release(mylock);
m spinlocks spin, locks block:
m a thread that calls spinlock_acquire spins until the lock can

be acquired

m a thread that calls lock_acquire blocks until the lock can
be acquired

Locks ]

can be used to protect larger critical sections without being a
burden on the CPU. They are a type of mutex. Have owners.

23 /56



Spinlocks and Locks Additional Notes

m spinlocks and locks have an owner; so they cannot be
involuntarily released
m a spinlock is owned by a CPU
m a lock is by a thread
m spinlocks disable interrupts on their CPU
m preemption is disabled on that CPU (hence, owned by CPU);
but not others
B minimizes spinning
m DO NOT use spinlocks to protect large critical sections

24 /56



Spinlock and Lock API

spinlock

lock

void spinlock_init(struct spinlock *1k)
void spinlock_acquire(struct spinlock *1k)
void spinlock release(struct spinlock *1k)
bool spinlock_do_i hold(struct spinlock *1k)
void spinlock_cleanup(struct spinlock *1k)

struct lock *lock_create(const char *name)
void lock_acquire(struct lock *1k)

void lock_release(struct lock *1k)

bool lock_do_i hold(struct lock *1k)

void lock_destroy(struct lock *1k)

25 /56



Thread Blocking

m Sometimes a thread will need to wait for something, e.g.:
m wait for a lock to be released by another thread
m wait for data from a (relatively) slow device
m wait for input from a keyboard
m wait for busy device to become idle
m When a thread blocks, it stops running:
m the scheduler chooses a new thread to run
m a context switch from the blocking thread to the new thread
occurs,
m the blocking thread is queued in a wait queue (not on the
ready list)

m Eventually, a blocked thread is signaled and awakened by
another thread.

26 /56



Wait Channels in OS/161

m wait channels are used to implement thread blocking in
0S/161
m void wchan_sleep(struct wchan *wc);
m blocks calling thread on wait channel wc
B causes a context switch, like thread_yield
m void wchan_wakeall (struct wchan *wc);
m unblock all threads sleeping on wait channel wc
m void wchan_wakeone(struct wchan *wc);
m unblock one thread sleeping on wait channel wc
m void wchan_lock(struct wchan *wc);

m prevent operations on wait channel wc
® more on this later!

m there can be many different wait channels, holding threads
that are blocked for different reasons.

wait channels in OS/161 are implemented with queues ]

27 /56



Thread States, Revisited _

preemption or
thread_yeild

thread_exit

ready pool dispatch

resource not available
wchan_sleep

resource available
wake_all/one

wait channels

running: currently executing
ready: ready to execute
blocked: waiting for something, not ready execute

ready threads are queued on the ready queue, blocked threads are
queued on wait channels

28 / 56



Semaphores

m A semaphore is a synchronization primitive that can be used
to enforce mutual exclusion requirements. It can also be used
to solve other kinds of synchronization problems.

m A semaphore is an object that has an integer value, and that
supports two operations:

P: if the semaphore value is greater than 0, decrement the value.
Otherwise, wait until the value is greater than 0 and then
decrement it.

V: increment the value of the semaphore

By definition, the P and V operations of a semaphore are atomic.

29 /56



Types of Semaphores

m binary semaphore: a semaphore with a single resource;
behaves like a lock, but does not keep track of ownership

m counting semaphore: a semaphore with an arbitrary number
of resources

m barrier semaphore: a semaphore used to force one thread to
wait for others to complete; initial count is typically 0

Differences between a lock and a semaphore
m V does not have to follow P
m a semaphore can start with 0 resources; calls to V increment
the count
m semaphores do not have owners

V does not have to follow P. A semaphore can start with O resources.
This forces a thread to wait until resources are produced before con-
tinuing.

30/56



Mutual Exclusion Using a Semaphore _

volatile int total = O;
struct semaphore *total_sem;
total_sem = sem_create("total mutex",1); /* initial value is 1 */

void add() { void sub() {
int i; int i;
for (i=0; i<N; i++) { for (i=0; i<N; i++) {
P(sem); P(sem);
total++; total--;
V(sem) ; V(sem) ;
} }
} }

31/56



Producer/Consumer Synchronization with Bounded Buffer

m suppose we have threads (producers) that add items to a

buffer and threads (consumers) that remove items from the
buffer

B suppose we want to ensure that consumers do not consume if
the buffer is empty - instead they must wait until the buffer
has something in it

m similarly, suppose the buffer has a finite capacity (N), and we
need to ensure that producers must wait if the buffer is full

m this requires synchronization between consumers and
producers

m semaphores can provide the necessary synchronization

32/56



Bounded Buffer Producer/Consumer with Semaphores

struct semaphore *Items,*Spaces;
Items = sem_create("Buffer Items", 0); /* initially = 0 */
Spaces = sem_create("Buffer Spaces", N);/* initially

]
=
*
~

Producer’s Pseudo-code:
P(Spaces) ;
add item to the buffer
V(Items);

Consumer’s Pseudo-code:
P(Items);
remove item from the buffer
V(Spaces) ;

There is still a race condition in this code. What is it? How can you
fix it?

33/56



Bounded Buffer Producer/Consumer with Semaphores

Discussion:
m consumers will wait for items to be produced

m producers will wait for spaces to be available

m producers and consumers can both access the bounded
buffer at the same time

m a third synchronization primitive is required to protect the
buffer

m a lock or binary semaphore is sufficient

34 /56



Semaphore Implementation

P(struct semaphore * sem) {
spinlock_acquire(&sem->sem_lock) ;
while (sem->sem_count == 0) {
wchan_lock(sem->sem_wchan) ;
spinlock_release(&sem->sem_lock) ;
wchan_sleep(sem->sem_wchan) ;
spinlock_acquire (&sem->sem_lock) ;

}

sem->sem_count--;

spinlock_release (&sem->sem_lock) ;

}

V(struct semaphore * sem) {
spinlock_acquire(&sem->sem_lock) ;
sem—->count ++;
wchan_wakeone (sem->sem_wchan) ;
spinlock _release(&sem->sem_lock) ;

Notes:

m semaphores do not have owners

m the wait channel must be locked before releasing the spinlock.

35 /56



Incorrect Semaphore Implementation Trace

Suppose spinlock_release preceeded wchan_lock, count= 0.

Thread 1 Thread 2
calls P()

count==0
spinlock_release
context switch —

The semaphore has no resources, Thread 1 will need to wait for a
resource. But, before Thread 1 sleeps, there is a context switch.

36 /56



Incorrect Semaphore Implementation Trace

Thread 1 Thread 2
calls P()

count==
spinlock _release
context switch —

vO

count++
wchan_wakeone

< context switch

Thread 2 produces a resource by calling V. At this point, count= 1.

37 /56



Incorrect Semaphore Implementation Trace -

Thread 1 Thread 2
calls P()

count==0
spinlock_release
context switch —

vVQ)

count++
wchan_wakeone

< context switch

wchan_lock
wchan_sleep

Thread 1 is now blocked on a semaphore that HAS RESOURCES.

38 /56



Correct Semaphore Implementation Trace

Suppose wchan lock preceeds spinlock release, count= 0.

Thread 1 Thread 2
calls P()

count==

wchan_lock
spinlock_release
context switch —

The semaphore has no resources, Thread 1 will need to wait for a
resource. But, before Thread 1 sleeps, there is a context switch.

39 /56



Correct Semaphore Implementation Trace

Thread 1

Thread 2

calls P()

count==0
wchan_lock
spinlock release

context switch —

calls vO)
spinlock_acquire
count++
wchan_wakeone

< context switch

of wchan_wakeone.

Thread 1 owns the wait channel, so Thread 2 will spin/block inside

40 / 56



Correct Semaphore Implementation Trace

Thread 1 Thread 2
calls P()

count==

wchan_lock

spinlock_release
context switch —

calls VO
spinlock_acquire
count++
wchan_wakeone

< context switch

wchan_sleep
context switch —

Thread 1 is now sleeping on the semaphores wait channel. Thread
2 will wake.

41/56



Correct Semaphore Implementation Trace

Thread 1 Thread 2

calls PO

count==

wchan_lock

spinlock release

context switch —
calls VO
spinlock_acquire
count++

wchan_wakeone
< context switch

wchan_sleep
context switch —

spinlock release

Thread 2 wakes—and Thread 1 is moved from the wait channel to
the ready queue, Thread 2 finishes execution of V().

42 /56



Condition Variables

m OS/161 supports another common synchronization primitive:
condition variables

m each condition variable is intended to work together with a
lock: condition variables are only used from within the
critical section that is protected by the lock

m three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases
the lock associated with the condition variable. Once the
thread is unblocked it reacquires the lock.

signal: If threads are blocked on the signaled condition
variable, then one of those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are
blocked on the condition variable.

43 /56



Using Condition Variables

m Condition variables get their name because they allow threads
to wait for arbitrary conditions to become true inside of a
critical section.

m Normally, each condition variable corresponds to a particular
condition that is of interest to an application. For example, in
the bounded buffer producer/consumer example on the
following slides, the two conditions are:

m count > 0 (there are items in the buffer)
m count < N (there is free space in the buffer)

m when a condition is not true, a thread can wait on the
corresponding condition variable until it becomes true

m when a thread detects that a condition is true, it uses signal
or broadcast to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that
has no waiters has no effect. Signals do not accumulate.

44 /56



Condition Variable Example

int volatile number0fGeese = 100;
lock geeseMutex;

int SafeToWalk() {
lock_acquire(geeseMutex) ;
if (numberOfGeese > 0) {

. wait?

}

Thread must wait for numberOfGeese > O before continuu-
ing. BUT thread owns geeseMutex, which protects access to
numberOfGeese.

45 / 56



Condition Variable Example - Solution 1

int volatile number0fGeese = 100;
lock geeseMutex;

int SafeToWalk() {
lock_acquire(geeseMutex) ;
while (numberOfGeese > 0) {
lock_release(geeseMutex) ;
lock_acquire(geeseMutex) ;

Releasing and re-acquiring geeseMutex provides an opportunity for
a context switch to occur and another thread might then acquire
the lock and modify numberOfGeese. BUT the thread should not
be waiting for the lock, it should be waiting for the condition to be
true.

46 / 56



Condition Variable Example - Solution 2

int volatile number0fGeese = 100;
lock geeseMutex;
cv zeroGeese;

int SafeToWalk() {
lock_acquire(geeseMutex) ;
while (numberOfGeese > 0) {
cv_wait(zeroGeese, geeseMutex);

Use a condition variable. cv_wait will handle releasing and re-
acquring the lock passed in (geeseMutex, in this case), it also
puts the calling thread onto the conditions wait channel to block.
cv_signal and cv_broadcast are used to wake threads waiting on
the cv.

47 /56



Waiting on Condition Variables

m when a blocked thread is unblocked (by signal or
broadcast), it reacquires the lock before returning from the
wait call

m a thread is in the critical section when it calls wait, and it will
be in the critical section when wait returns. However, in
between the call and the return, while the caller is blocked,
the caller is out of the critical section, and other threads may
enter.

This describes Mesa-style condition variables, which are used in
0S/161. There are alternative condition variable semantics (Hoare
semantics), which differ from the semantics described here.

48 /56



Bounded Buffer Producer Using Locks and Condition
Variables

int volatile count = 0; /* must initially be 0 */
struct lock *mutex; /* for mutual exclusion */
struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created
* using lock_create() and cv_create() before Produce()
* and Consume() are called */

Produce (itemType item) {
lock_acquire(mutex) ;
while (count == N) {
cv_wait (notfull, mutex); /* wait until buffer is not full */
}

add item to buffer (call list_append())

count = count + 1;

cv_signal (notempty, mutex); /+* signal that buffer is not empty */
lock_release (mutex) ;

49 /56



Bounded Buffer Consumer Using Locks and Condition
Variables

itemType Consume() {
lock-acquire (mutex) ;
while (count == 0) {
cv_wait(notempty, mutex); /* wait until buffer is not emtpy */
}

remove item from buffer (call list_remove_front())

count = count - 1;

cv_signal (notfull, mutex); /* signal that buffer is not full */
lock_release(mutex) ;

return(item);

Both Produce() and Consume() call cv_wait() inside of a while
loop. Why?

50 / 56



Volatile and Other Sources of Race Conditions

m notice throughout these slides that shared variables were
declared volatile

m race conditions can occur for reasons other beyond the
programmers control, specifically:
m compiler
= CPU
both can introduce race conditions

m in both cases, compiler and CPU introduce race conditions
due to optimizations
m memory models describe how thread access to memory in
shared regions behave
m a memory model tells the compiler and CPU which
optimizations can be performed

51 /56



Volatile

m it is faster to access values from a register, than from memory
m compilers optimize for this; storing values in registers for as

long as possible
m consider:
int sharedTotal = 0;
int FuncA(Q) {
. code that uses sharedTotal ...

int FuncB() {
. code that uses sharedTotal ...
}

if the compiler optimizes sharedTotal into register R3 in
FuncA, and register R8 in FuncB, which register has the
correct value for sharedTotal?

m volatile disables this optimization, forcing a value to be
loaded/stored to memory with each use, it also prevents the
compiler from re-ordering loads and stores for that variable

m shared variables should be declared volatile in your code

52 /56



Other Language and Instruction Level Instructions

m many languages support multi-threading with memory models
and language-level synchronization functions (i.e., locks)

m compiler is aware of critical sections via language-level
synchronization functions; does not perform optimizations
which cause race conditions

m the version of C used by OS/161 does not support this

m the CPU also has a memory model as it also re-orders loads
and stores to improve performance

m modern architectures provide barrier or fence instructions to
disable and reenable these CPU-level optimizations to prevent

race conditions at this level
m the MIPS R3000 CPU used in this course does not have or
require these instructions

53 /56



Deadlocks

Consider the following pseudocode:

lock lockA, lockB;

int FuncA() { int FuncB() {
lock.acquire(lockA) lock_acquire (lockB)
lock-acquire(lockB) lock-acquire(lockA)
lock_release(lockA) lock_release(lockB)
lock_release(lockB) lock_release(lockA)
}
m What if:

m Thread 1 executes lock_acquire(lockA)
m Thread 2 executes lock_acquire(lockB)
m Thread 1 executes lock_acquire(lockB)
m Thread 2 executes lock_acquire(lockA)

54 /56



Deadlocks

Consider the following pseudocode:

lock lockA, lockB;

int FuncA(Q) { int FuncB() {
lock_acquire(lockA) lock_acquire(lockB)
lock-acquire (lockB) lock_acquire(lockA)
lock_release(lockA) lock_release(lockB)
lock-release(lockB) lock_release(lockA)
}
m What if:

m Thread 1 executes lock_acquire(lockA)
Thread 2 executes lock_acquire(lockB)
Thread 1 executes lock_acquire(lockB)
Thread 2 executes lock_acquire(lockA)

Thread 1 and 2 are deadlocked. Neither thread can make progress.
Waiting will not resolve the deadlock, the threads a permanently
stuck.

55 / 56



Two Techniques for Deadlock Prevention

No Hold and Wait: prevent a thread from requesting
resources if it currently has resources allocated to it. A thread
may hold several resources, but to do so it must make a single
request for all of them.

Resource Ordering: Order (e.g., number) the resource types,
and require that each thread acquire resources in increasing
resource type order. That is, a thread may make no requests
for resources of type less than or equal to i if it is holding
resources of type i.

56 / 56



