
Virtual Memory
key concepts: virtual memory, physical memory, address

translation, MMU, TLB, relocation, paging, segmentation,
executable file, swapping, page fault, locality, page replacement

Lesley Istead

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2019

1 / 57

Physical Memory

If physical addresses are P bits, then the maximum amount
of addressable physical memory is 2P bytes.

Sys/161 MIPS CPU uses 32 bit physical addresses (P = 32)
⇒ maximum physical memory size of 232 bytes, or 4GB.
Larger values of P on modern CPUs, e.g., P = 48 ⇒ 256 TB
of physical memory to be addressed.
The examples in these slides use P = 18

The actual amount of physical memory on a machine may be less
than the maximum amount that can be addressed.

2 / 57

Virtual Memory

The kernel provides a separate, private virtual memory for
each process.

The virtual memory of a process holds the code, data, and
stack for the program that is running in that process.

If virtual addresses are V bits, the maximum size of a virtual
memory is 2V bytes.

For the MIPS, V = 32.
In our example slides, V = 16.

Running applications see only virtual addresses, e.g.,

program counter and stack pointer hold virtual addresses of
the next instruction and the stack
pointers to variables are virtual addresses
jumps/branches refer to virtual addresses

Each process is isolated in its virtual memory, and cannot
access other process’ virtual memories.

3 / 57

Virtual Memory

virtual addresses are 16 bits
maximum virtual memory size is 64KB

4 / 57

Why virtual memory?

isolate processes from each other; kernel

potential to support virtual memory larger than physical
memory

the total size of all VMs can be larger than physical memory
(greater support for multiprocessing)

The concept of virtual memory dates back to a doctoral thesis in
1956. Burroughs (1961) and Atlas (1962) produced the first com-
mercial machines with virtual memory support.

5 / 57

Address Translation

Each virtual memory is mapped to a different part of physical
memory.

Since virtual memory is not real, when an process tries to
access (load or store) a virtual address, the virtual address is
translated (mapped) to its corresponding physical address,
and the load or store is performed in physical memory.

Address translation is performed in hardware, on the
Memory Managment Unit, MMU, using information
provided by the kernel.

Even the program counter (PC) is a virtual address. Each instruction
requires at least one translation. Hence, the translation is done in
hardware, which is faster than software.

6 / 57

Dynamic Relocation

offset, or, relocation (R) is the position in physical memory where
the processes memory begins. limit (L) is the amount of memory
used by the process. The MMU has a register for each.
Given virtual address v :
if v < L then physical address p = v + relocation
else exception

7 / 57

Dynamic Relocation Example

Process A Process B
Limit Register: 0x0000 7000 Limit Register: 0x0000 C000
Relocation Register: 0x0002 4000 Relocation Register: 0x0001 3000

v = 0x102C p = ?
v = 0x8000 p = ?
v = 0x0000 p = ?

v = 0x102C p = ?
v = 0x8000 p = ?
v = 0x0000 p = ?

Recall

Addresses that cannot be translated produce exceptions.
Though efficient, dynamic relocation suffers from fragmentation.

8 / 57

A More Realistic Virtual Memory

growth

text (program code) and read−only data

data

0x10000000 − 0x101200B0

0x00000000 0xFFFFFFFF

stack
high end of stack: 0x7FFFFFFF

0x00400000 − 0x00401A0C

This is the layout of the virtual address space for the OS/161 test
application user/testbin/sort. Note that it requires a total of
1.2MB divided between code, data, and stack segments. However,
the virtual memory is 4GB in size (32bit addressing).

Dynamic relocation would require 2GB of space for sort. Why?
Because dynamic relocation uses a single, contiguous block of virtual
memory for its address spaces, and 2GB is the smallest, continguous
chunk that would fit the entire address space for sort.

9 / 57

Segmentation

Instead of mapping the entire virtual memory to physical, we
map each segment of the virtual memory that the
application uses separately.

The kernel maintains an offset and limit for each segment.

With segmentation, a virtual address can be thought of as
having two parts: (segment ID, offset within segment)
with K bits for the segment ID, we can have up to:

2K segments
2V−K bytes per segment

The kernel decides where each segment is placed in physical
memory.

Fragmentation of physical memory is still possible

If there are 4 segments, log(4) = 2 bits are required to represent
the segment number. The maximum size of each segment is then:
2V−K = 2V−2 bytes.

10 / 57

Segmented Address Space Diagram

11 / 57

Translating Segmented Virtual Addresses

Many different approaches for translating segmented virtual
addresses

Approach 1: MMU has a relocation register and a limit
register for each segment

let Ri be the relocation offset and Li be the limit for the ith
segment
To translate virtual address v to a physical address p:

split v into segment number (s) and

address within segment (a)
if a ≥ Ls then generate exception

else

p ← a + Ri

As for dynamic relocation, the kernel maintains a separate set
of relocation offsets and limits for each process, and changes
the values in the MMU’s registers when there is a context
switch between processes.

12 / 57

Segmented Address Translation Example

Process A
Segment Limit Register Relocation Register
0 0x2000 0x38000
1 0x5000 0x10000

Process B
Segment Limit Register Relocation Register
0 0x3000 0x15000
1 0xB000 0x22000

Translate the following for process A and B:
Address Segment Offset Physical Address

v = 0x1240
v = 0xA0A0
v = 0x66AC
v = 0xE880

13 / 57

Translating Segmented Virtual Addresses

Approach 2: Maintain a segment table

+

segment table

base register

m bits
segment table

length register

T F

address

exception

seg # offset

v bits

m bits

segment table

protection

size start

virtual address

MMU

>

physical address

If the segment number in v is greater than the number of segments
throw an exception. Otherwise, use the segment number to lookup
the limit and relocation values from the segment table.

14 / 57

Paging: Physical Memory

Physical memory is divided into fixed-size chunks called physical
pages, or, frames. Physical addresses, in this example, are 18bits.
Physical page size, in this example, is 4KB.
There are 218/212 = 26 = 64 frames of physical memory.

15 / 57

Paging: Virtual Memory

Virtual memory is divided into fixed-size chunks called pages.
Page size equals frame size.
Virtual addresses, in this example, are 16bits.
Page size, in this example, is 4KB.
There are 216/212 = 24 = 16 pages in virtual memory.

16 / 57

Paging: Address Translation

Each page maps to a different frame. Any page can map to any
frame. Pages are mapped to frames using a page table.

17 / 57

Page Tables
Process A Page Table

Page Frame Valid?
0x0 0x0F 1
0x1 0x26 1
0x2 0x27 1
0x3 0x28 1
0x4 0x11 1
0x5 0x12 1
0x6 0x13 1
0x7 0x00 0
0x8 0x00 0
· · · · · · · · ·
0xE 0x00 0
0xF 0x00 0

Process B Page Table
Page Frame Valid?
0x0 0x14 1
0x1 0x15 1
0x2 0x16 1
0x3 0x23 1
· · · · · · · · ·
0x9 0x32 1
0xA 0x33 1
0xB 0x2C 1
0xC 0x00 0
0xD 0x00 0
0xE 0x00 0
0xF 0x00 0

Each row in the page table is a page table entry (PTE).
The table is indexed by page number.

The valid bit is used to indicate if the PTE is used or not, because
not all pages of virtual memory may be used by the address space.
If it is 1, the PTE maps a page in the address space to physical
memory. If it is 0, the PTE does not correspond to a page in the
address space. Number of PTEs = Maximum Virtual Memory
Size / Page Size

18 / 57

Paging: Address Translation in the MMU

The MMU includes a page table base register which points
to the page table for the current process

How the MMU translates a virtual address:
1 determines the page number and offset of the virtual

address

page number is the virtual address divided by the page size
offset is the virtual address modulo the page size

2 looks up the page’s entry (PTE) in the current process page
table, using the page number

3 if the PTE is not valid, raise an exception
4 otherwise, combine page’s frame number from the PTE with

the offset to determine the physical address

physical address is (frame number * frame size) + offset

19 / 57

Paging: Address Translation Illustrated

0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0

Process A

virtual

address

(16 bits)

offset

(12 bits)

page number

(4 bits)

page table lookup

0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0

physical

address

(18 bits)

0 1

B8

1 2

offset

(12 bits)

frame number

(6 bits)

5 4

B8 4

Number of Bits for Offset = log(Page Size)
Number of PTEs = Maximum Virtual Memory Size / Page Size
Number of Bits for Page Number = log(Number of PTEs)

20 / 57

Paging: Address Translation Example

Process A Page Table Process B Page Table
Page Frame Valid?
0x0 0x0F 1
0x1 0x26 1
0x2 0x27 1
0x3 0x28 1
0x4 0x11 1
0x5 0x12 1
0x6 0x13 1
0x7 0x00 0
0x8 0x00 0
· · · · · · · · ·
0xE 0x00 0
0xF 0x00 0

Page Frame Valid?
0x0 0x14 1
0x1 0x15 1
0x2 0x16 1
0x3 0x23 1
· · · · · · · · ·
0x9 0x32 1
0xA 0x33 1
0xB 0x2C 1
0xC 0x00 0
0xD 0x00 0
0xE 0x00 0
0xF 0x00 0

Translate for Process A and Process B

Virtual Address Process A Process B
v = 0x102C p = p =
v = 0x9800 p = p =
v = 0x0024 p = p =

21 / 57

Other Information Found in PTEs

PTEs may contain other fields, in addition to the frame
number and valid bit

Example 1: write protection bit
can be set by the kernel to indicate that a page is read-only
if a write operation (e.g., MIPS lw) uses a virtual address on a
read-only page, the MMU will raise an exception when it
translates the virtual address

Example 2: bits to track page usage
reference (use) bit: has the process used this page recently?
dirty bit: have contents of this page been changed?
these bits are set by the MMU, and read by the kernel (more
on this later!)

22 / 57

Page Tables: How Big?

A page table has one PTE for each page in the virtual
memory

Page Table Size = (Number of Pages)*(Size of PTE)
Recall: Number of Pages = Maximum Virtual Memory
Size / Page Size
Size of PTE is typically provided

The page table a 64KB virtual memory, with 4KB pages, is 64
bytes, assuming 32 bits for each PTE

Larger Virtual Memory

If V = 32bits, then the maximum virtual memory size is 4GB.
Assuming page size is 4KB, and PTE size is 32bits (4bytes), the
page table would be 4MB.

If V = 48bits, then the page table would be: 248/212∗22 = 238bytes,
or, 256GB.

Page tables can get very, very large.

23 / 57

Page Tables: Where?

Page tables are kernel data structures. They live in the kernel’s
memory. If P = 48 and V = 48, how many page tables can fit into
the kernel’s memory?

24 / 57

Shrinking the Page Table: Multi-Level Paging

Instead of having a single page table to map an entire virtual
memory, we can organize it and split the page table into
multiple levels.

a large, contiguous table is replaced with multiple smaller
tables, each fitting onto a single page
if a table contains no valid PTEs, do not create that table

0x0 1

Pg# Addr V?

0x0BB8

...

0x1 0x1688 1

0xN 0x0 0

0x0 1

Pg# Addr V?

0xA5A5

...

0x1 0xB4B4 1

0xN 0x0 0

0x0 1

Pg# Addr V?

0x00C5

...

0x1 0x0ACE 1

0xN 0x0 0

0x0 1

Pg# Frame V?

0x350

...

0x1 0x488 1

0xN 0x0 0

...

...

Level 1 Level 2 Level N

The lowest-level page table (N), contains the frame number. All
higher level tables contain pointers to tables on the next level.

25 / 57

Two-Level Paging Example (Process A)

Single-Level Paging Two-Level Paging

Page Frame V?
0x0 0x0F 1
0x1 0x26 1
0x2 0x27 1
0x3 0x28 1
0x4 0x11 1
0x5 0x12 1
0x6 0x13 1
0x7 0x00 0
0x8 0x00 0
· · · · · · · · ·
0xE 0x00 0
0xF 0x00 0

Directory Page Tables (1 and 2)
Page Address V?
0x0 Table 1 1
0x1 Table 2 1
0x2 NULL 0
0x3 NULL 0

Page Frame V?
0x0 0x0F 1
0x1 0x26 1
0x2 0x27 1
0x3 0x28 1

Page Frame V?
0x0 0x11 1
0x1 0x12 1
0x2 0x13 1
0x3 NULL 0

V? → Valid?
If a PTE is not valid, it does not matter what the frame or address
is.

26 / 57

Two-Level Paging: Address Translation

0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0

Process A

virtual

address

(16 bits)

offset

(12 bits)

level 2

page

number

(2 bits)

page

table

lookup

0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0

physical

address

(18 bits)

0 1

B8

8 b 41 2

offset

(12 bits)

frame number

(6 bits)

level 1

page

number

(2 bits)

1

page

dir

lookup

1 4

The address translation is the same as single-level paging: Physical
Address = Frame Number * Page Size + offset. The lookup is
different.

27 / 57

Multi-Level Paging: Address Translation

The MMU’s page table base register points to the page
table directory for the current process.

Each virtual address v has n parts: (p1, p2, ..., pn, o)

How the MMU translates a virtual address:

1 index into the page table directory using p1 to get a pointer to
a 2nd level page table

2 if the directory entry is not valid, raise an exception
3 index into the 2nd level page table using p2 to find a pointer

to a 3rd level page table
4 if the entry is not valid, raise an exception
5 ...
6 index into the n-th level page table using pn to find a PTE for

the page being accessed
7 if the PTE is not valid, raise an exception
8 otherwise, combine the frame number from the PTE with o to

determine the physical address (as for single-level paging)

28 / 57

How Many Levels?

One goal of multi-level paging is to reduce the size of
individual page tables.

Ideally, each table would fit on a single page.

As V increases, so does the need for more levels.

If V = 40 (40 bit virtual addresses), page size is 4KB, and,
PTE size is 4 bytes.
There are 240/212 = 228 pages in virtual memory.
212/22 = 210 PTEs fit on a single page.
Need up to 228/210 = 218 page tables, so the directly must
hold 218 entries, which requires 218 ∗ 22 = 220 or 1MB of space!

When the number of entries required exceeds a page, add
more levels to map larger virtual memories.

29 / 57

Summary: Roles of the Kernel and the MMU

Kernel:
Manage MMU registers on address space switches (context
switch from thread in one process to thread in a different
process)
Create and manage page tables
Manage (allocate/deallocate) physical memory
Handle exceptions raised by the MMU

MMU (hardware):
Translate virtual addresses to physical addresses
Check for and raise exceptions when necessary

30 / 57

TLBs

Each assembly instruction requires a minimum of one memory
operation

one to fetch instruction, one or more for instruction operands

Address translation through a page table adds a minimum of
one extra memory operation (for page table entry lookup) for
each memory operation performed during instruction
execution.

This can be slow!

Solution: include a Translation Lookaside Buffer (TLB) in
the MMU

TLB is a small, fast, dedicated cache of address translations,
in the MMU
Each TLB entry stores a (page# → frame#) mapping

31 / 57

TLB Use

What the MMU does to translate a virtual address on page p:
if there is an entry (p,f) in the TLB then

return f /* TLB hit! */

else

find p’s frame number (f) from the page table

add (p,f) to the TLB, evicting another entry if full

return f /* TLB miss */

If the MMU cannot distinguish TLB entries from different
address spaces, then the kernel must clear or invalidate the
TLB on each context switch from one process to another.

32 / 57

Software-Managed TLBs

The TLB described on the previous slide is a
hardware-managed TLB

the MMU handles TLB misses, including page table lookup
and replacement of TLB entries
MMU must understand the kernel’s page table format

The MIPS has a software-managed TLB, which translates
a virtual address on page p like this:
if there is an entry (p,f) in the TLB then

return f /* TLB hit! */

else

raise exception /* TLB miss */

In case of a TLB miss, the kernel must

1 determine the frame number for p
2 add (p,f) to the TLB, evicting another entry if necessary

After the miss is handled, the instruction that caused the
exception is re-tried

33 / 57

The MIPS R3000 TLB

high word (32 bits) low word (32 bits)

20 6 20

page # PID

(not used)

frame #
write permission

(TLBLO_DIRTY)

valid

The MIPS TLB has room for 64 entries. Each entry is 64 bits (8
bytes) long, as shown. See kern/arch/mips/include/tlb.h

34 / 57

Paging - Conclusion

paging does not introduce external fragmentation

multi-level paging reduces the amount of memory required to
store page-to-frame mappings

TLB misses are increasingly expensive with deeper page tables
To translate an address causing A TLB miss for a three-level
page table requires three memory accesses

one for each page table

Paging originates in the late 1950s/early 1960s.

Current Intel CPUs support 4-level paging with 48bit virtual ad-
dresses. Support for 5-level paging with 57bit virtual addresses is
coming and Linux already supports it.

35 / 57

Virtual Memory in OS/161 on MIPS: dumbvm

the MIPS uses 32-bit paged virtual and physical addresses

the MIPS has a software-managed TLB

Recall: software TLB raises an exception on every TLB miss
kernel is free to record page-to-frame mappings however it
wants to
TLB exceptions are handled by a kernel function called
vm fault

vm fault uses information from an addrspace structure to
determine a page-to-frame mapping to load into the TLB

there is a separate addrspace structure for each process
each addrspace structure describes where its process’s pages
are stored in physical memory
an addrspace structure does the same job as a page table,
but the addrspace structure is simpler because OS/161 places
all pages of each segment contiguously in physical memory

36 / 57

The addrspace Structure

struct addrspace {

vaddr_t as_vbase1; /* base virtual address of code segment */

paddr_t as_pbase1; /* base physical address of code segment */

size_t as_npages1; /* size (in pages) of code segment */

vaddr_t as_vbase2; /* base virtual address of data segment */

paddr_t as_pbase2; /* base physical address of data segment */

size_t as_npages2; /* size (in pages) of data segment */

paddr_t as_stackpbase; /* base physical address of stack */

};

virtual memory

co
d

e

d
a

ta

sta
ck

npages1vbase1

vbase2 npages2

co
d

e

d
a

ta

sta
ck physical memory

stackpbase

pbase2

pbase1

37 / 57

dumbvm Address Translation

vbase1 = as->as_vbase1;

vtop1 = vbase1 + as->as_npages1 * PAGE_SIZE;

vbase2 = as->as_vbase2;

vtop2 = vbase2 + as->as_npages2 * PAGE_SIZE;

stackbase = USERSTACK - DUMBVM_STACKPAGES * PAGE_SIZE;

stacktop = USERSTACK;

if (faultaddress >= vbase1 && faultaddress < vtop1) {

paddr = (faultaddress - vbase1) + as->as_pbase1;

}

else if (faultaddress >= vbase2 && faultaddress < vtop2) {

paddr = (faultaddress - vbase2) + as->as_pbase2;

}

else if (faultaddress >= stackbase && faultaddress < stacktop) {

paddr = (faultaddress - stackbase) + as->as_stackpbase;

}

else {

return EFAULT;

}

USERSTACK = 0x8000 0000, DUMBVM STACKPAGES = 12,
PAGE SIZE = 4KB.

38 / 57

Address Translation: OS/161 dumbvm Example
Note: in OS/161 the stack is 12 pages and the page size is 4 KB = 0x1000.

Variable/Field Process 1 Process 2

as vbase1 0x0040 0000 0x0040 0000
as pbase1 0x0020 0000 0x0050 0000

as npages1 0x0000 0008 0x0000 0002
as vbase2 0x1000 0000 0x1000 0000
as pbase2 0x0080 0000 0x00A0 0000

as npages2 0x0000 0010 0x0000 0008
as stackpbase 0x0010 0000 0x00B0 0000

Process 1 Process 2

Virtual addr 0x0040 0004 0x0040 0004

Physical addr = ___________ ? ___________ ?

Virtual addr 0x1000 91A4 0x1000 91A4

Physical addr = ___________ ? ___________ ?

Virtual addr 0x7FFF 41A4 0x7FFF 41A4

Physical addr = ___________ ? ___________ ?

Virtual addr 0x7FFF 32B0 0x2000 41BC

Physical addr = ___________ ? ___________ ?

39 / 57

Initializing an Address Space

When the kernel creates a process to run a particular
program, it must create an address space for the process, and
load the program’s code and data into that address space

OS/161 pre-loads the address space before the program runs. Many
other OS load pages on demand. (Why?)

A program’s code and data is described in an executable file,
OS/161 (and some other operating systems) expect
executable files to be in ELF (Executable and Linking
Format) format
The OS/161 execv system call re-initializes the address space
of a process

int execv(const char *program, char **args)

The program parameter of the execv system call should be
the name of the ELF executable file for the program that is to
be loaded into the address space.

40 / 57

ELF Files

ELF files contain address space segment descriptions
The ELF header describes the segment images:

the virtual address of the start of the segment
the length of the segment in the virtual address space
the location of the segment in the ELF
the length of the segment in the ELF

the ELF file identifies the (virtual) address of the program’s
first instruction (the entry point)

the ELF file also contains lots of other information (e.g.,
section descriptors, symbol tables) that is useful to compilers,
linkers, debuggers, loaders and other tools used to build
programs

41 / 57

OS/161 ELF Files

OS/161’s dumbvm implementation assumes that an ELF file
contains two segments:

a text segment, containing the program code and any
read-only data
a data segment, containing any other global program data

the images in the ELF file are an exact copy of the binary
data to be stored in the address space

BUT the ELF file does not describe the stack (why not?)

dumbvm creates a stack segment for each process. It is 12
pages long, ending at virtual address 0x7FFFFFFF

The image in the ELF may be smaller than the segment it is loaded
into in the address space, in which case the rest of the address
space segment is expected to be zero-filled.

Look at kern/syscall/loadelf.c to see how OS/161 loads seg-
ments from ELF files

42 / 57

Virtual Memory for the Kernel

We would like the kernel to live in virtual memory, but there
are some challenges:

1 Bootstrapping: Since the kernel helps to implement virtual
memory, how can the kernel run in virtual memory when it is
just starting?

2 Sharing: Sometimes data need to be copied between the
kernel and application programs? How can this happen if they
are in different virtual address spaces?

The sharing problem can be addressed by making the kernel’s
virtual memory overlap with process’ virtual memories.

Solutions to the bootstrapping problem are
architecture-specific.

virtual memory

0x0 0x7FFF FFFF 0x8000 0000 0xFFFF FFFF

user addresses kernel addresses

43 / 57

OS/161 Memory

virtual memory

0x0 0x7FFF FFFF

0x8000 0000

0xFFFF FFFF

user addresses

kernel addresses

physical memory

kuseg - paged
kseg0 kseg1 kseg2

0xA000 0000

0xC000 0000

0x0 0x4000 0000
1GB

remaining 3GB unavailable to system

Sys/161 only supports 1GB of physical memory. The remaining 3GB
are not available/usable. The kernel’s virtual memory is divided into
three segments:

kseg0 - 512MB - for kernel data structures, stacks, etc.

kseg1 - 512MB - for addressing devices

kseg2 - 1GB - unused
Physical memory is divided into frames. Frame use is managed by
the kernel in the coremap.

44 / 57

OS/161 Memory

virtual memory

0x0 0x7FFF FFFF

0x8000 0000

0xFFFF FFFF

user addresses

kernel addresses

physical memory

kuseg - paged
kseg0 kseg1 kseg2

0xA000 0000

0xC000 0000

0x0 0x4000 0000
1GB

remaining 3GB unavailable to system

User virtual memory, kuseg, is paged. The kernel maintains the page-
to-frame mappings for each process. The TLB is used to translate
kuseg virtual addresses to physical ones.

45 / 57

OS/161 Memory

virtual memory

0x0 0x7FFF FFFF

0x8000 0000

0xFFFF FFFF

user addresses

kernel addresses

physical memory

kuseg - paged
kseg0 kseg1 kseg2

0xA000 0000

0xC000 0000

0x0 0x4000 0000
1GB

remaining 3GB unavailable to system

Addresses within kseg0 are for the kernel’s data structures, stacks,
and code. To translate kseg0 addresses to physical ones subtract
0x8000 0000 from the virtual address.
kseg0 maps to the first 512MB of physical memory, though it may
not use all of this space.
The TLB is NOT used.

46 / 57

OS/161 Memory

virtual memory

0x0 0x7FFF FFFF

0x8000 0000

0xFFFF FFFF

user addresses

kernel addresses

physical memory

kuseg - paged
kseg0 kseg1 kseg2

0xA000 0000

0xC000 0000

0x0 0x4000 0000
1GB

remaining 3GB unavailable to system

Addresses within kseg1 are for accessing devices. To translate kseg1
addresses to physical ones subtract 0xA000 0000 from the virtual
address.
kseg1 maps to the first 512MB of physical memory, though it does
not use all of this space.
The TLB is NOT used.
kseg2 is NOT USED.

47 / 57

Exploiting Secondary Storage

Goals:

Allow virtual address spaces that are larger than the physical
address space.

Allow greater multiprogramming levels by using less of the
available (primary) memory for each process.

Method:

Allow pages from virtual memories to be stored in secondary
storage, i.e., on disks or SSDs.

Swap pages (or segments) between secondary storage and
primary memory so that they are in primary memory when
they are needed.

48 / 57

Resident Sets and Present Bits

When swapping is used, some pages of virtual memory will be
in memory, and others will not be in memory.

The set of virtual pages present in physical memory is called
the resident set of a process.
A process’s resident set will change over time as pages are
swapped in and out of physical memory

To track which pages are in physical memory, each PTE needs
to contain an extra bit, called the present bit:

valid = 1,present = 1: page is valid and in memory
valid = 1,present = 0: page is valid, but not in memory
valid = 0,present = x : invalid page

49 / 57

Page Faults

When a process tries to access a page that is not in memory,
the problem is detected because the page’s present bit is
zero:

on a machine with a hardware-managed TLB, the MMU
detects this when it checks the page’s PTE, and generates an
exception, which the kernel must handle
on a machine with a software-managed TLB, the kernel
detects the problem when it checks the page’s PTE after a
TLB miss (i.e., the TLB should not contain any entries that
are not present).

This event (attempting to access a non-resident page) is
called a page fault.
When a page fault happens, it is the kernel’s job to:

1 Swap the page into memory from secondary storage, evicting
another page from memory if necessary.

2 Update the PTE (set the present bit)
3 Return from the exception so that the application can retry the

virtual memory access that caused the page fault.

50 / 57

Page Faults are Slow

Accessing secondary storage (milliseconds, or,
microseconds for SSDs) can be orders of magnitude slower
than RAM (nanoseconds)

Suppose that secondary storage access is 1000 times slower
than memory access. Then:

Frequency of Fault Average Memory Access Time w/ Swapping
1 in 10 memory accesses 100 times slower
1 in 100 10 times slower
1 in 1000 2 times slower

To improve performance of virtual memory with on-demand
paging, reduce the occurrence of page faults

limit the number of processes, so that there is enough physical
memory per process
try to be smart about which pages are kept in physical
memory, and which are evicted.
hide latencies, e.g., by prefetching pages before a process
needs them

51 / 57

A Simple Replacement Policy: FIFO

replacement policy: when the kernel needs to evict a page
from physical memory, which page should it evict?

the FIFO policy: replace the page that has been in memory
the longest

a three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x

52 / 57

Optimal Page Replacement

There is an optimal page replacement policy for demand
paging, called MIN: replace the page that will not be
referenced for the longest time.

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a a a a c c c

Frame 2 b b b b b b b b b d d

Frame 3 c d d d e e e e e e

Fault ? x x x x x x x

MIN requires knowledge of the future.

53 / 57

Locality

Real programs do not access their virtual memories randomly.
Instead, they exhibit locality:

temporal locality: programs are more likely to access pages
that they have accessed recently than pages that they have not
accessed recently.
spatial locality: programs are likely to access parts of memory
that are close to parts of memory they have accessed recently.

Locality helps the kernel keep page fault rates low.

54 / 57

Least Recently Used (LRU) Page Replacement

the same three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e c c c

Frame 2 b b b a a a a a a d d

Frame 3 c c c b b b b b b e

Fault ? x x x x x x x x x x

55 / 57

Measuring Memory Accesses

The kernel is not aware which pages a program is using unless
there is an exception.

This makes it difficult for the kernel to exploit locality by
implementating a replacement policy like LRU.

The MMU can help solve this problem by tracking page
accesses in hardware.

Simple scheme: add a use bit (or reference bit) to each PTE.
This bit:

is set by the MMU each time the page is used, i.e., each time
the MMU translates a virtual address on that page
can be read and cleared by the kernel.

The use bit provides a small amount of memory usage
information that can be exploited by the kernel.

56 / 57

The Clock Replacement Algorithm

The clock algorithm (also known as “second chance”) is one
of the simplest algorithms that exploits the use bit.
The clock algorithm can be visualized as a victim pointer that
cycles through the page frames. The pointer moves whenever
a replacement is necessary:

while use bit of victim is set

clear use bit of victim

victim = (victim + 1) % num_frames

choose victim for replacement

victim = (victim + 1) % num_frames

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x

57 / 57

