(CS350: Assignment 1 — Loading Programs

Emil Tsalapatis

For this course we will be writing code for a small but complete OS named
CastorOS to implement real-world OS mechanisms. CastorOS is an educational
OS that runs on real hardware or as a VM using virtualization [12]. In the
course of the assignments we will write code to boot and run CastorOS, and
then add critical system calls to it to implement important OS functionality like
threading, scheduling, and file systems.

We will be running CastorOS using the QEMU emulator [I] that runs the
entire OS inside a userspace process. QEMU emulates [4] real hardware using
code, so the OS runs as if on bare metal. QEMU is available on Linux and
MacOS, and on Windows through WSL [II].

In this assigment we set up CastorOS and fill in the code enough to make
it boot into userspace. The OS is missing parts of the Spawn call that is needed
to run applications and pass arguments to them. Booting up the system thus
leads to a crash when the kernel tries to set up the init process. CastorOS’s
loader is incomplete and cannot load the program into the process. The loader
also does not have code for copying the process’ command line arguments into
its memory. We will implement argument passing so that we can run userspace
processes like shells.

1 Setting up the CS350 Client

We will be using the client.py command line tool to interact with the CS350
submission server. The tool is a script that we use to retrieve the source, submit
our work, and check the status of our submission.

1.1 Setting Up the Submission Client

We first add our credentials to the client.py tool. To access the server we need
to add our username and hex magic string to allow the script to authenticate
with the server. The username is our 8-character UW ID. The magic hex string
is a hex string that we receive via email from cs350-noreply@uwaterloo.ca.
We directly modify in a text editor the client.py Python script provided in the
course website. We change the values of the script’s STUDENT and MAGIC variables
from None to our username and magic string respectively. To test whether we
have entered our credentials correctly we run:

$ python client.py ping

CS350 Server is active

$ python client.py status
Last Active Submission: None
Grades: None

We first use the client.py ping command to confirm that the submission
server is accessible from our machine. After we ensure we can ping the server
we run client.py status to ensure we have the proper credentials. If we have
properly added our credentials to the client the server will respond with our
last active submission and our active grade. In this case we have not submitted
anything yet, so there are no active submissions or grades.

1.2 Downloading Castor OS

Next we download the newest version of the CastorOS source:
$ python client.py download

The command requests CastorOS’s source from the submission server and
places it in the current directory. We use tar to unpack the source into a Cas-
torOS directory that we will be developing our solutions in.

$ tar zxvf castoros-latest.tar.gz

The starter code will be in the castoros directory.

2 Getting Started

We first install the SCons [8] build tool that compiles the OS and creates the
runnable image. If you are on student.cs.uwaterloo.ca this is already done for
you. The entire compilation process happens by running the scons command
on the base OS source directory.

We must set SCons to use the LLVM [I0] 15 toolchain to compile and link
the image. OS images must conform to a very precise layout specification. Differ-
ent compilers or even versions of the same compiler however generate different
layouts for the same code and build arguments. LLVM 15 has been confirmed
to produce a correct image so we will be using it for all assignments. We ensure
that SCons uses LLVM 15 by creating a file called Local.sc in the CastorOS
directory and directly defining the compiler version. We will be using the Clang
compiler both for compilation and linking, so we add the lines CC=clang-15 and
LD=clang-15 to Local.sc. Using the cat utility to inspect the file’s contents
should produce the following:

$ cat Local.sc
CC="clang-15"
LD="clang-15"

The Clang command may have a different name under different OSes. Please
consult your OS’s documentation for more details if running clang-15 fails.

We start up CastorOS by passing the outputs of the compilation process
to QEMU. The build process generates from the source tree a disk image in
build/bootdisk.img and a kernel image in build/sys/castor. QEMU uses
the disk image to emulate a disk device that behaves like a real disk. The disk
image holds a file system with the userspace utilities, configuration files and
user data. The kernel image only includes the kernel and is separate because it
must be passed directly to QEMU for the machine to boot.

The kernel image conforms to the multiboot format [7] used by QEMU
to set up the kernel for execution at boot time. This format is widely used by
bootloaders [2]. CastorOS can thus be installed on real hardware using a popular
multiboot compatible loader. We do not need to run CastorOS on bare metal
for the base assignments.

We create the emulated machine where we will be running CastorOS using
the following command from a terminal:

$ cd <path-to-basedir>

$ gemu-system-x86_64 \
-smp cpus=1 \

-kernel build/sys/castor \
-hda build/bootdisk.img \
-nic none \

-nographic

The above command creates the emulated machine and boots CastorOS.
We use a single CPU for now (-smp) and pass the kernel image using its path
in our local file system (-kernel). We use as a disk the image generated by
the build process (-hda). The machine needs no network interface card (-nic).
We use a serial console to communicate with the machine so we do not need
a framebuffer [5] (-nographic). We either run the above QEMU command in
the base source directory or adjust the arguments to the -kernel and -hda
parameters accordingly.

We must ensure that the machine is booting properly before proceeding with
the assignment. Entering Ctrl+A X kills the machine and frees up the terminal.

The output should look something like this:

SeaBIOS (version rel-1.16.2-0-gealb7a073390-prebuilt.qemu.org)
Booting from ROM..Castor Operating System
Invalid magic number: 0x0
flags = 0x24f
mem_lower = 639KB, mem_upper = 129920KB
boot_device = 0x8000ffff
cmdline = /root/castoros/build/sys/castor mods_count = O, mods_addr = 0x43b000
mmap_addr = 0x9000, mmap_length = Oxa8
size = Ox14, base_addr = 0x0, length = 0x9fc00, type = 0Ox1

<... omitted...>

zing GDT...
zing TSS...
zing IDT...

Initiali
Initiali
Initiali
Initiali
Initiali
Initiali
<... om
loader:
loader:
loader:
loader:
loader:
loader:
loader:
loader:
CPU O

Done!
Done!
Done!

zing Syscall... Done!

zing PMAP ...
zing XMEM ...
itted ...

Offset
00000000
AllocMap
00001750
AllocMap
000057a0
AllocMap

Done!
Done!
>

VAddr FileSize
0000000000200000 00001744
0000000000200000 00001744
0000000000202750 00004049
0000000000202000 00004799
00000000002077a0 00000200
0000000000207000 00000£48

Jumping to userspace

Interrupt 14 Error Code: 0000000000000004
<Debug Information>

Entered Debugger!

kdbg>

The goal of this assignment is to fix the OS so that it can finish booting. The
diagnostics tell us that the OS properly initializes the hardware but crashes when
it attempts to create the first userspace process called init. This is expected
because the loader code is incomplete. In the next section we will go through
the missing pieces we must write we to complete it.

The source tree includes the userspace, kernel, and tools for the OS. The
tree looks as follows:

<path-to-basedir>

| --AUTHO
|--bin

| --build
| -—inclu
|--1ib

| --LICEN
| --pxeli
|--relea
| --sbin
| --SCons
| --sys
|--tests

The source tree holds the different userspace components and the kernel
in separate directories. The kernel is entirely within the sys/ directory and
includes device drivers, system calls and core subsystems. Userspace programs

RS

de
SE
nux

se

truct

MemSize
00001744

00004049

000007a8

are entirely within the bin/ and sbin/ directories. These programs use the
system API defined within the headers in include. The 1lib directory holds
userspace shared libraries like 1ibc that implement the userspace part of this
API and often interface with the kernel. The build directory is initially empty
and serves as a destination for the compiled kernel binary and disk image.

The Spawn Call For this assignment we will be implementing the Spawn sys-
tem call. Spawn creates a new process in the system that runs the application
binary specified in the arguments. The call is a combination of the fork and
exec system calls in UNIX-like systems. Windows has a system call with the
same semantics called CreateProcess and modern UNIX-like systems support
posix_spawn.

The complete signature of the system call is:

int 0SSpawn(char *path, char *argv[]);

Spawn creates a new process and loads the binary specified by path, with
an array of command line arguments specified by *argv[].
The pseudocode for the Spawn call is the following;:

Algorithm 2.1: Pseudocode for Spawn.

Input: Userspace address of program path string, userspace address of
argument array

Output: Process ID of the new process

path <— Copy_StrIn(userPath)

args < PAlloc_AllocPage()

copy in userArgs from userspace into args

elfhdr < PAlloc_AllocPage()

get a file handle fp from path

read in the first 1 KiB of fp into el fhdr

proc < Process_Create()

thr < Thread_Create()

open the console and attach it to proc

outbuf < PmapTranslate()

Loader_Load(fp, el fhdr)

copy out args into outbu f

close the fp handle

mark proc as runnable

return proc— > pid

© 00 N O ok W N

[e T =
U R W N = O

We must write the code for the steps marked in red, while steps in black
are already implemented. The call first copies in its arguments from userspace
memory to kernel memory for later use. These are the path and an argument
array that must be deep copied[3] into the kernel. Spawn allocates memory using
PMap_AllocPage that for our purposes returns a kernel buffer. The system call

then allocates a buffer for the ELF program header that we look into in the
Section [3| and reads it from the program binary. Spawn creates metadata for the
process and its thread and attaches the process to the console. Finally Spawn
loads in the program itself into process memory, copies out to it the arguments
passed by the caller, and marks it as runnable. Below we will go through the
steps necessary to fill in the two gaps in the code.

3 Completing the Loader

Files to complete this section:
e sys/kern/loader.c
e sys/kern/syscall.c (you will complete this in the next section)

In this section we finish implementing the loader to allow the OS to load
usespace processes. After completing this section the OS will load /sbin/init
and then stop. In the next section, we will complete spawn to get the shell
running.

Users run applications by invoking the spawn system call that loads a pro-
gram binary and its arguments. For example, running /bin/cat filel file2
in our shell, calls the /bin/cat program with the arguments [filel, file2].

The kernel first creates an empty process, with no data in its address space. It
then reads in the program data from the binary and unpacks it into the address
space. The kernel also initializes the CPU registers of the process thread so that
it starts executing from main and copies the argv vector into the process. The
resulting process is ready to run the program in userspace. The loader is the OS
component that takes care of this address space and CPU initialization.

The loader should implement the address space and CPU initialization, but
the version provided is missing the relevant code paths. The loader has two
issues: It does not copy the program code into the process and does not set
the initial instruction pointer. We will add the code for reading in the program
binary, and set the initial instruction pointter by parsing the binary.

Reading in the program code is a simple read operation, but we must use the
kernel virtual file system (VFS) API to implement it. The VFS APT is defined
in sys/include/vfs.h and describes the operations that can be done with file
system files. We list the API below:

int VFS_MountRoot(Disk *root);

VNode *VFS_Lookup(const char *path);

int VFS_Stat(const char *path, struct stat *sb);

int VFS_Open(VNode *fn);

int VFS_Close(VNode *fn);

int VFS_Read(VNode *fn, void *buf, uint64_t off, uint64_t len);

int VFS_ReadDir(VNode *fn, void *buf, uint64_t len, uint64_t *off);

The loader must parse the program binary and cannot just write it into
the address as it is. CastorOS programs are in the ELF File Format [J] that
is the standard binary format by modern UNIX-like systems. The ELF format
describes programs as a set sections that comprise the program code and data.
The ELF format also provides a set of segments through it’s program headers
that describe how to load the program into memory.

Each of these segments is mapped independently of the others and represents
code, data, or zeroed out space (BSS). The loader’s job is to iterate over the
program headers in the ELF binary and read them into the new process. You
can inspect the headers using the readelf utility in our local machine to print
them out in human-readable form.

% readelf -h -1 build/sbin/init/init

ELF Header:
Magic: 7f 45 4c 46 02 01 01 09 00 00 00 00 00 00 00 00
Class: ELF64
Entry point address: 0x202b00

Elf file type is EXEC (Executable file)
Entry point 0x202b00
There are 7 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flg Align
LOAD 0x0000000000000000 0x0000000000200000 0x0000000000200000
0x0000000000001af4 0x0000000000001af4 R 0x1000
LOAD 0x0000000000001b00 0x0000000000202b00 0x0000000000202b00
0x0000000000004049 0x0000000000004049 R E 0x1000
LOAD 0x0000000000005b50 0x0000000000207b50 0x0000000000207b50
0x0000000000000200 0x00000000000007a8 RW 0x1000

The listing above shows a truncated version of init’s ELF headers. The
header includes the entry point address that points to the first instruction to
execute. The headers below describe the sections of the address space that the
loader will create and load the binary into. Note that the second segment has
read/execute permissions and an address of 0x202b00, the same as the entry
point address. The two addresses are identical because the segment holds the
program code that the process starts executing from.

We will use the Lookup, Open, Read, and Close calls to read in the segments.
First we use Lookup to get a reference to the program file’s handle using the
file path passed by the user. We open the file for reading using Open, then Read

the first 1 KiB of data. We already provide the buffer to be passed to Read as
a variable called pg. CastorOS already has code create this buffer and attach it
to the address space, so we only need to fill it with the ELF segment data.
The next step is to fix the Loader_Load call to traverse the list of segments
and load the segments into the address space. The function already iterates
over the program headers once to create the memory regions for each segment
in the program’s address space. Traverse all the program headers the same way
that the existing loop does, loading the program code into the already created
mapping. Only segments marked PT_LOAD must be loaded at load time.

= —
CODE

F |
Bss

- ™
DATA

J

-)
DATA

t J

stacK]

=
stacx]

Figure 1: The memory layout of a userspace program. The code segment holds
the executable program code. The BSS holds prezeroed variables, while the data
segments are empty space created at runtime by the program itself. The kernel
places the stack of each thread in the process in a dynamically created stack
segment.

The ELF header has the following structure (code taken from Linux’s 1ibc):

typedef struct {
unsigned char e_ident[EI_NIDENT]; /* File identification. */

E1f64_Half e_type; /* File type. */

E1f64_Half e_machine; /* Machine architecture. */
E1f64_Word e_version; /* ELF format version. */
E1f64_Addr e_entry; /* Entry point. */

E1f64_0ff e_phoff; /* Program header file offset. */
E1f64_0ff e_shoff; /* Section header file offset. */
E1f64_Word e_flags; /* Architecture-specific flags. */
E1f64_Half e_ehsize; /* Size of ELF header in bytes. */

E1f64_Half e_phentsize; /* Size of program header entry. */

E1f64_Half e_phnum; /* # of program header entries. */
E1f64_Half e_shentsize; /* Size of section header entry. */

E1f64_Half e_shnum; /* # of section header entries. */
E1f64_Half e_shstrndx; /* Section name strings section. */

} E1£f64_Ehdr;

A =
ELF Header

I D4

Progrom Header T able J

's ~
Text

. Y

r A
.codata

N v/

data]

L Section Header Table J

Figure 2: The ELF metadata of a program. In this assignment we only need to
find the ELF header and program header table, then read in each segment.

CastorOS already has code for testing the integrity of the header, so we only
need to parse the program headers in the file. First we access the e_phoff field
in the ELF header that lists the offset in the file of the first program header. We
also need e_phnum, the number of program headers in the ELF binary. Program
headers have a fixed size and fits within the 1 KiB of the file we have read
into the kernel, so we only need to typecast the data read from the file into an
array of program headers. This conversion is already done in Loader_Load and
provides us with the phdr pointer to the program header array.

To complete the function, we must iterate through the phdr array and load
each segment into the address space. We will use the functions LoaderLoadSegment
and LoaderZeroSegment from sys/kern/loader.c to read in and map segment
into the process. Each header has the following structure:

typedef struct {

E1f64_Word p_type; /* Entry type. */

E1f64_Word p_flags; /* Access permission flags. */
E1f64_0ff p_offset; /* File offset of contents. */
E1£64_Addr p_vaddr; /* Virtual address in memory image.

*/

E1f64_Addr p_paddr; /* Physical address (not used). */
E1f64_Xword p_filesz; /* Size of contents in file. */
E1f64_Xword p_memsz; /* Size of contents in memory. */
E1f64_Xword p_align; /* Alignment in memory and file. */

} E1£f64_Phdr;

We use the helpers to load the segment data into the mapping, the zero
out the rest. First we use LoaderLoadSegment to read the p_filesz of data
from file offset p_offset into address p_vaddr of the address space. We then
use LoaderZeroSegment to zero out the rest of the segment after calculating
the location and size of the leftover region. We only load segments that of type
PT_LOAD that means they are to be loaded at process creation time.

Implementing the loader should result in the system loading the init process.
You will see an extra message in the console showing that init is attempting to
load the shell that will then fail. Next we will complete Syscall_Spawn that
will allow init to load the shell.

4 Passing arguments

Files to complete this section:
e sys/kern/syscall.c

The final step in the assignment is implementing argument passing. The
current spawn call does not copy over any arguments to the main function of
the process. Any shell command that uses arguments does not work properly.
We will fill in the code in Spawn to remove this limitation.

Spawn is called from a userspace to create a new process. An example is a
shell process that creates a new process for each command. When the user types
a command in the command line, the shell responds by passing the arguments
over to Spawn. The Spawn call creates a new process that runs then exits, after
which the shell returns control to the user.

Let’s take as an example an invocation of the cat shell command. The
command opens all input files and prints their contents to the terminal. If file
a.txt has contents "Hello\n " and file b.txt has contents "World\n ", then:

$ cat a.txt b.txt
Hello

World

$

The shell receives the arguments [cat, a.txt, b.txt]. The shell then re-
solves the full path of cat to /bin/cat and calls spawn, here called 0SSpawn:

char *path = "/bin/cat";
char *args = { "cat", "a.txt", "b.txt" };
0SSpawn(path, args);

10

CastorOS already has code to read in the strings from user to kernel memory.
The OS allocates a page into which it reads in all arguments as a sequence of
strings. Each string is read using the Copy_StrIn functions that copies strings
from userspace to the kernel. The code uses the page pushes each string into a
buffer, so if we have arguments "argi\0", "arg2\0", "arg3\0" in userspace
the call produces a buffer with contents "argi\Oarg2\0arg3\0" where \0 the
null string termination character. The system call assumes there are up to 7
arguments and that each argument is at most 256 bytes long, so they fit in the
4 KiB buffer allocated in Spawn.

We must pass to the newly created process address space not just the argu-
ments but also a way to find them. Part of the C runtime is 1ib/libc/crtl.c
that parses the argument array given by the kernel and runs the program main
function.

We map some process memory into the kernel to more conveniently copy
over the arguments. By convention, the OS uses the addresses above the top
of the stack as the location of the argv vector, so the userspace address of the
buffer we will be storing the arguments in is MEM_USERSPACE_STKTOP - PGSIZE.
The first 64 bytes of this buffer are used to store the argv vector itself, while
the rest of the buffer holds the arguments.

We copy the data over using the buffer as a stack, pushing the string argu-
ments one at a time. We first create an uintptr_t * array called outarr by
typecasting the argstart pointer, then zeroing it out. We then treat the rest of
the buffer as a char * buffer that we can copy the strings into. We also typecast
the arg array that holds the copied over arguments and name it inarr. These
typecasts make it easier for us to work with userspace addresses and help us
avoid mistakes.

We then construct the argv vector in the user portion of memory and place
its userspace address into the argstart variable. We go through the buffer that
holds the concatenated arguments and use strlen to find the offset and length
of each string in the buffer. Keep in mind that strlen does not include the null
byte at the end of each string that must also be accounted for in the length. We
then use strcpy to write the string into the output buffer. We modify the page
in the kernel using direct assignment and memcpy because the code takes care
of mapping the userspace page into the kernel. We treat the output buffer as a
stack by keeping an offset in the buffer after which there is only free space.

Every time we add a new string we use write it at this offset of the buffer.
We then adjust the offset by the length of the copied data, so that the next
argument to be copied will be placed right after the data we just added. The
entry at offset 0 of the argument vector holds the argument count argc, and
does not hold a pointer to an argument.

Every time we copy over a string, we record the userspace address it will
have at the right offset of the argv vector. We compute the userspace address
by combining the offset of the string in the page with the base userspace address
of the buffer. We then write the address into the argstart pointer array at
same offset in the userspace array as the one it has in the in-kernel array. The
argstart array is the argv array used by main in userspace, and is placed at

11

Algorithm 4.2: The argument copying algorithm.

Input: Userspace address of program path string, userspace address of
argument array

Output: Process ID of the new process

outarg < (char *)argstart

outarray < (uintptr_t *)argstart

inarray < (uintptr_t *)arg

of fset < the size of the 8-element uintptr_t array

Zero out outarray

for i in [1..8] do

if inarrayli] is NULL then

L outarrayl0] i —1

© 00 N O s W N

break

10 len < the length of the new argument adjusted for \0
11 copy over the string to outarg at the of fset

12 outarray[i] < offset + the userspace address of argstart
13 of fset < of fset + len

the beginning of the userspace page we store the arguments in.

If the loading and argument passing code is implemented correctly then the
kernel properly boots into userspace and a shell prompt appears. We can enter
commands like 1s and cd to the prompt to explore the emulated machine’s file
system.

loader: Offset VAddr FileSize MemSize
loader: 00000000 0000000000200000 00001744 00001744
loader: AllocMap 0000000000200000 00001744

loader: 00001750 0000000000202750 00004049 00004049
loader: AllocMap 0000000000202000 00004799

loader: 000057a0 00000000002077a0 00000200 000007a8
loader: AllocMap 0000000000207000 00000£48

loader: Jumping to userspace

Init spawning shell

syscall: Spawn(/bin/shell)

syscall: SPAWN ff££8100100098a0

loader: Offset VAddr FileSize MemSize
loader: 00000000 0000000000200000 00001824 00001824
loader: AllocMap 0000000000200000 00001824

loader: 00001830 0000000000202830 000042a9 000042a9
loader: AllocMap 0000000000202000 00004ad9

loader: 00005ae0 0000000000207ae0 00000230 000007d8
loader: AllocMap 0000000000207000 000012b8

System Shell

12

0x€0000000 | Y h
0x8000000% | 0x¥00000040
OxE0000010 | OxE00000045
0x8000001% | Ox800000044
0x80000020 | 0xE0000004F

NOLL
NoLL

NULL
Ox¥0000040 ARGNO
Ox¥0000045 ARG2NO

Ox800000494 | ARGI\O
OxBO00004F | ARGHD
0x80000054 | NULL)

Figure 3: The layout of the arguments page in userspace. The first 8 words (64
bytes) are the argument array. The first entry holds the number of entries in
the array, the rest hold either the userspace address of an argument or NULL.
We place the argument strings themselves directly after the array. In this case
our arguments are the four strings form argl to arg4 along with the string ter-
mination character \0. The strings are have size 5 and are stored consecutively
in the page. The pointers in the array come in multiples of 5 for this reason.

5 Submitting Your Solutions

5.1 Submitting Results

After filling in the code we create a patch with our solutions. We first use git
commit to create a single local commit with our additions to the codebase.
The commit should only include the sys/kern/syscall.c and sys/k-
ern/loader.c. If the commit includes any other files the server will
automatically reject the submission. Next we use client.py patch to
generate a patch out of our local source tree:

$ python client.py patch

We can provide the script with the location of the source tree using the
--srcroot flag. If such an argument is not provided, the script defaults to
searching for the castoros source tree in the current working directory.

$ python client.py patch --srcroot /path/to/castoros/dir

The last step is to submit the patch to the submission system:

13

$ python client.py submit

The patch should be called “castoros-patch” and be in the current working
directory. The command sends the patch over to the submission server and
queues it for evaluation. The submission server takes about an hour to
evaluate submissions. Submitting a new patch overwrites any active
submissions without evaluating them.

We can monitor the status of our submission using the client.py status
command we saw earlier:

$ python client.py status

6 Debugging CastorOS

For debugging our solution we use three tools: kprintf debugging, the kgdb
kernel debugger from inside the OS, and the GDB from outside the OS. We
choose which tool to use depending on the nature of the bug we are tracking
down.

The simplest technique at our disposal is kprintf debugging. We add kprintf
statements in the kernel at various points in the code to print helpful diagnostics
throughout execution. Using kprintf is quick and easy but requires changing
the code every time we want to move or change a print message. Using kprintf
is also not always possible, e.g., during early boot.

Make sure to remove all kprintf messages from your code before
you submit. The grading scripts used to evaluate submissions read the serial
console of the QEMU machine to check whether basic shell commands like 1s
and cat work correctly. Leftover kprintf messages may write to the console
when these commands are being executed and cause the submission to fail the
script’s tests even if it is correct.

Another tool at our disposal is the standard GDB debugger. QEMU allows
GDB to directly hook into the running OS and debug it as if it was a regular
process. To use GDB with CastorOS we first add the -s and -S flags when
invoking QEMU [6]. These flags will make QEMU listen for connections from a
local GDB instance and also prevent it from running the OS immediately.

If you want debug symbols you will need to change the BUILDTYPE to
DEBUG by editing your Local.sc and adding BUILDTYPE="DEBUG” to it. I
would recommend removing this when you don’t need it.

cqemu-system-x86_64 -s -S -nic none -m 64 -smp cpus=1 -nographic \
-kernel build/sys/castor -hda build/bootdisk.img

We use GDB by running the following command from another terminal:
(gdb) target remote localhost:1234
This command will attach the GDB instance into CastorOS running inside

QEMU. Running

14

(gdb) continue

will allow CastorOS to start booting. We then debug our OS as if it were a
regular application. Please refer to one of the many GDB tutorials out there for
details on how to use GDB for debugging.

The third tool is CastorOS’s builtin kgdb kernel debugger. The main advan-
tage of kgdb is its direct access to kernel state. CastorOS enters kgdb either
if there is a kernel crash or if we run the bkpt command from the CastorOS
terminal. If we enter kgdb using bkpt we resume execution with continue.

Running help in kgdb gives us a list of commands we can run. Each com-
mand gives us information about a certain part of the system, e.g. CPU state
or running processes/threads. Using kgdb is ideal for bugs that do not crash the
system immediately but eventually cause problems or crashes.

7 Text questions

e What is the difference between fork, exec, and spawn? Are all three
necessary in a system?

e How does fork create a new copy of program memory in UNIX-like sys-
tems?

e In the ELF format PT_DYNAMIC is used to denote a dynamically linked
segment. What does this mean? How is dynamic linking useful?

15

References

[1]
2]

, August 2023.

Bootloader. https://en.wikipedia.org/wiki/Bootloader, August
2023.

Deep Copy. https://developer.mozilla.com/en-US/docsc/Glossary/
Deep_copy, August 2023.

Emulator. https://en.wikipedia.org/wiki/Emulator, August 2023.

Framebuffer. https://en.wikipedia.org/wiki/Framebuffer, August
2023.

GDB usage. https://qemu-project.gitlab.io/qemu/system/gdb.
html, August 2023.

Multiboot Specification. https://www.gnu.org/software/grub/manual/
multiboot/multiboot.html, August 2023.

SCons: A software construction tool. http://scons.org, August 2023.
The ELF File Format. https://wiki.osdev.org/ELF, August 2023.

The LLVM Compiler Infrastructure Project. https://1lvm.org, August
2023.

What is the Windows Subsystem for Linux? https://learn.microsoft.
com/en-us/windows/ws1l/about, August 2023.

What is Virtualization? https://aws.amazon.com/what-is/
virtualization, August 2023.

16

https://en.wikipedia.org/wiki/Bootloader
https://developer.mozilla.com/en-US/docsc/Glossary/Deep_copy
https://developer.mozilla.com/en-US/docsc/Glossary/Deep_copy
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Framebuffer
https://qemu-project.gitlab.io/qemu/system/gdb.html
https://qemu-project.gitlab.io/qemu/system/gdb.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://scons.org
https://wiki.osdev.org/ELF
https://llvm.org
https://learn.microsoft.com/en-us/windows/wsl/about
https://learn.microsoft.com/en-us/windows/wsl/about
https://aws.amazon.com/what-is/virtualization
https://aws.amazon.com/what-is/virtualization

	Setting up the CS350 Client
	Setting Up the Submission Client
	Downloading Castor OS

	Getting Started
	Completing the Loader
	Passing arguments
	Submitting Your Solutions
	Submitting Results

	Debugging CastorOS
	Text questions

