
CS350: Assignment 2 – Kernel-side

Synchronization

Emil Tsalapatis

1 Introduction

In this assignment we will be implementing enough kernel functionality in Cas-
torOS to enable job control for userspace applications. The main parent process
of an application often spawns multiple child processes that execute a task then
exit. The main process must wait for the children to finish and exit before
continuing execution. Our task is to implement the mechanism that the parent
process uses to wait for the children to finish.

CastorOS currently does not implement a mechanism for a parent process
to wait for children to exit. The missing API is CastorOS’s OSWait system call
that has equivalents in virtually every operating system. A parent process calls
OSWait to query the exit status of either a specific child process or all of its
children. The OSWait system call blocks until the child being inspected exits
and notifies the parent. The semantics of the call ensure that the parent will
not continue executing until the child finishes running. CastorOS is missing this
call, so parent processes have no way to query the state of their children.

The OSWait must use synchronization between the parent and child pro-
cess that is currently missing from the kernel. The CastorOS kernel does have
semaphores, but we will not be using them in our own code. We will instead
be coding mutexes and condition variables that we will then use for mutual
exclusion and event signalling. We will then use these primitives to implement
the OSWait call logic.

2 Overview

2.1 Job control and processes

In this exercise we will add enough code to the kernel to implement the OSWait
system call that is needed for job control. Processes in CastorOS and UNIX
(and almost all other) systems are organized into a tree where the parents point
to the children. Parents retain this reference to a child in the form of a process
ID (PID) used to query the status of the child process.

For example, shells receive commands from the user and spawn a new child
process that the command runs in. The shell then waits until the child process



by querying the child’s status using its PID. Only after the child has exited does
the shell resume taking input from the command line.

3 Implementing locks

We will first be implementing mutexes for locking. Mutexes are primitives used
for mutual exclusion, meaning that a critical section of code between a Lock

and Unlock on a lock never runs concurrently with any other critical section for
the same lock.

Below is a simple example of a lock that protects data by wrapping the code
that accesses it into a critical section:

void increment(lock *a, int num) {

int tmp1;

Lock(a);

tmp1 = num;

tmp1 += 1;

num = tmp1;

Unlock(a);

}

void decrement(lock *a, int num) {

int tmp2;

Lock(a);

tmp2 = num;

tmp2 -= 1;

num = tmp2;

Unlock(a);

}

The critical section prevents bugs that rise from executing these functions
at the same time or by interleaving the code of these functions in a problematic
way, for example, because of the scheduler forcing a context switch. An example
of a buggy execution caused by the absence of locks would be the following:

// num is 0

tmp1 = num;

tmp2 = num

tmp1 += 1;

// num is 1

num = tmp1;

tmp2 += 1;

num = tmp2;

// num is -1 (BUG)
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Mutexes ensure that from the point of view of the thread executing the code
in blue, the code in black executes atomically and vice versa. Locks thus prevent
the above interleaving and eliminate the bug.

The Mutex API is relatively minimal:

void Mutex_Init(Mutex *mtx, const char *name);
void Mutex_Destroy(Mutex *mtx);
void Mutex_Lock(Mutex *mtx);
int Mutex_TryLock(Mutex *mtx);
void Mutex_Unlock(Mutex *mtx);
\captionof{lstlisting}{A \NAME mutex}.}

Threads call into the Mutex API to manage and use the in-kernel mu-
texes. New mutexes are allocated by the thread and initialized by passing
them Mutex_Init. Threads then use the mutex by calling Mutex_Lock to take
ownership of it. The Mutex_Lock call blocks the thread and puts it to sleep
if the mutex is already in use. The system will wake up the thread when the
owner of the lock calls Mutex_Unlock to release ownership. A thread that wants
to take the lock but does not want to block if the lock is already owned calls
Mutex_TryLock instead of Mutex_Lock. The Mutex_TryLock calls returns fail-
ure instead of blocking.

Next we inspect the struct Mutex data structures that represents the mutex
to better understand how to implement it. The data structure is found in
sys/include/mutex.h and is:

typedef struct Mutex {
uint64_t status;
Thread *owner;
Spinlock lock;
WaitChannel chan;
LIST_ENTRY(Mutex) buckets;

} Mutex;
\captionof{lstlisting}{A \NAME mutex}.}

We will inspect the structure line by line:

typedef struct Mutex {

...

} Mutex;

We use typedef keyword in C to create shorthand names for data structures.
All instances of data structures in C are normally declared by the struct key-
word, so without typedef we would be writing code like:

struct Mutex mtx;

With the above typedef we can use just write:

Mutex mtx;

The shorthand name does not need to match the longer form, e.g., we could
use Mtx as an even shorter name.
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uint64_t status;

The status field describes whether the mutex is held or free. The only
two possible values are MTX_STATUS_UNLOCKED and MTX_STATUS_LOCKED. The
structure is updated by the Lock, TryLock, and Unlock routines.

Thread *owner;

The owner field holds a pointer to the Thread structure of the thread that
holds the lock. We use this structure to find bugs related to threads trying to
unlock a lock they do not own. This structure is updated in tandem with the
status variable.

Spinlock lock;

The lock field provides locking for the Mutex data structure itself. When
using the mutex API we modify multiple data structures at once, and we must
avoid races between threads trying to inspect or modify the same lock.

WaitChannel chan;

The chan variable represents the wait channel of the lock. A wait channel is
a queue used to notify threads when the lock is released. A Mutex_Lock call on
an already owned lock results in the thread instead registering itself with the
wait channel going to sleep. A Mutex_Unlock call similarly wakes up a thread
sleeping on the wait channel if such a thread exists while unlocking the mutex.

LIST_ENTRY(Mutex) buckets;

The buckets field is a linked list node. Linked lists hold a variable number of
elements of the same type. Unlike arrays, they grow and shrink as elements are
added and removed. Please refer to the Appendix 6 for an explanation on how
linked lists are implemented in practice, and for a more detailed explanation of
how the above field is used.

Mutex_Lock and Mutex_Unlock The Mutex_Lock function repeatedly inspects
the state of the mutex and until it finds it unlocked, then puts itself as the owner.
The caller takes the spinlock of the mutex to prevent races, then checks whether
the mutex is taken. If the mutex is free then the function sets its state to be
held and the owner to be the calling thread, then releases the spinlock. If the
mutex is taken then the thread gets the wait channel spinlock, releases the
mutex spinlock, then goes to sleep. The function will continue executing when
the thread gets woken up, at which point the thread will reacquire the spinlock
and repeat the loop until it finds the mutex unlocked.

The most complex part of the locking code is properly taking and releasing
the spinlocks. The order in which we lock and unlock must be the same as the
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Algorithm 3.1: The Mutex_Lock code

1 acquire the mutex spinlock
2 while the lock is taken do
3 get the wait channel spinlock
4 release the mutex spinlock
5 sleep on the wait channel
6 reacquire the mutex spinlock

7 mark the mutex as held
8 mark the mutex with the new owner
9 release the mutex spinlock

one in the pseudocode to avoid subtle deadlocks and data races. For example,
our code must release the spinlock before sleeping on the wait channel to avoid
deadlocking. If the thread kept the spinlock during the sleep then other threads
would not be able to call Mutex_Unlock to free the mutex because they would
block on the spinlock lock. The sleeping thread loops after waking up because
some other thread may have locked the mutex while the newly woken thread
was trying to reacquire the spinlock. In that case the woken thread goes back
to sleep and waits to be woken up again.

Taking the wait channel spinlock before unlocking the mutex spinlock is
called “hand-over-hand” locking and is a common pattern when using fine-
grained locking. Hand-over-hand locking is critical to avoid subtle bugs like the
“lost wakeup” problem that we demonstrate in the code below:

Algorithm 3.2: The “lost wakeup” problem

1 acquire the mutex spinlock
2 while the lock is taken do
3 release the mutex spinlock
4 Mutex_Unlock() called from another thread
5 get the wait channel spinlock
6 sleep on the wait channel
7 reacquire the mutex spinlock

8 mark the mutex as held
9 mark the mutex with the new owner

10 release the mutex spinlock

This implementation of Mutex_Lock differs from the correct one in that the
function releases the mutex spinlock before locking the wait channel. In this case
another thread may fully run Mutex_Unlock before the locking thread blocks
on the wait channel. The result is that the thread goes to sleep even though the
mutex is now unlocked. Even worse, threads waiting on a lock only wake up
by other threads calling to Mutex_Unlock and notifying them that the mutex
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is now free. Threads running the buggy code above may miss the wakeup call
and remain blocked indefinitely, effectively deadlocking.

The Mutex_Unlock code is simpler because it never blocks. The code takes
the mutex spinlock, marks the mutex as free and wakes up any threads attempt-
ing to lock the mutex that are sleeping on the waitqueue:

Algorithm 3.3: The Mutex_Unlock code

1 acquire the mutex spinlock
2 mark the mutex as not held
3 remove the current thread as the owner
4 wake up a thread waiting on the wait channel
5 release the mutex spinlock

We now have all the necessary components to implement mutexes in Cas-
torOS. The only task left is to write the C code in sys/kern/mutex.c that
corresponds to the pseudocode above. For that we will use the APIs from
waitchannel.h and spinlock.h that we can find in the sys/include direc-
tory.

4 Condition Variables

In this section we will be implementing condition variables (CV). CVs are a
data structure that processes use to optimize thread scheduling. Condition
variables have similar semantics to the wait channels data structure that is part
of struct Mutex. Threads must sometimes wait for some system-wide event to
happen, and cannot proceed otherwise. In that case they wait on a CV, putting
themselves to sleep indefinitely. When the event finally takes place, the running
thread that triggered the event notifies the sleeping thread by signalling to the
condition variable.

In a sense we have already how condition variables are used in this very
exercise. The Mutex_Lock code solves the same problem as CVs because it
enables the following pattern:

Algorithm 4.1: An example of a CV

1 take lock
2 while some condition is not met do
3 atomically drop lock and wait
4 wakeup and take lock

5 do work
6 drop lock

The main problem is how to proceed into a critical section only when some
condition in the program is met. As we saw in Mutex_Lock writing the above
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code using wait channels and spinlocks is complex and error-prone. Condition
variables provide a more intuitive alternative. The definition of the data struc-
ture and its API are in include/sys/cv.h:

typedef struct CV {

WaitChannel chan;

} CV;

void CV_Init(CV *cv, const char *name);

void CV_Destroy(CV *cv);

void CV_Wait(CV *cv, Mutex *mtx);

void CV_Signal(CV *cv);

void CV_Broadcast(CV *cv);

CVs are a simple wrapper over wait channels, and have an almost identical
API. The CV_Signal call corresponds to WaitChannel_Wake, andCV_Broadcast
corresponds to WaitChannel_WakeAll. The only difference in the API is that
the CV_Wait call also takes a mutex, because the call internally takes the wait
channel lock, drops the mutex, enters the wait channel, then locks back the
mutex before returning.

Using CVs makes it easy to avoid deadlocks and lost wakeups. The C code
uses mutexes and CVs to solve the problem of waiting for a condition to become
true before entering the critical section:

int exampleWaiter(CV *cv, Mutex *mtx) {

Mutex_Lock(mtx);

while (!necessaryCondition())

CV_Wait(cv, mtx);

doWork();

Mutex_Unlock(mtx);

}

int exampleSignaler(CV *cv) {

Mutex_Lock(mtx);

setConditionToTrue();

CV_Signal(cv, mtx);

Mutex_Unlock(mtx);

}

The CV API replaces the complex locking and removes the need for the
developer to code in Mutex_Lock/Unlock calls before and after going to sleep.

We can now fill in the CV API in sys/kern/cv.c. The signalling APIs are
wrappers over the underlying wait channel APIs, while the wait call includes the
logic for hand-over-hand locking between the mutex and the wait channel lock,
while also locking the mutex back after waking back from WaitChannel_Wait.
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5 Implementing wait

The system call used to query the child’s status is called wait in most OSes.
The parent calls the function with the PID of the child whose exit status it
wants to inspect. If the child has exited, the call returns a status variable that
includes the child’s exit value. This way the parent can check whether the child
executed successfully or exited because of an error. A process that calls wait
with the PID of a child that has not yet exited will block until the child exits.

The wait call provides the option to wait for any child to exit instead of
taking a single PID. Some processes have multiple children that may finish
executing in any order. An example is a shell that is running two background
processes with PIDs P1 and P2. The shell must notify the user when either P1

or P2 exits, but if it calls wait with P1 and P2 exits first the shell will not be
notified until P1 also exits. To avoid this situation wait takes a special value
that means “return the exit status of the first child that exits. The special value
is -1 in UNIX and 0 in CastorOS.

CastorOS processes that call OSWait in userspace ultimately execute the
Process_Wait call in the kernel that implements the above logic. We will
be using the locks and CVs we implemented in the previous sections for our
implementation. The pseudocode in the next page the describes the complete
function, with the missing logic marked in red:

Our task is to use and modify the zombieProc queue of zombie children.
CastorOS currently does not use the queue because it does not need it, as
it does not implement wait. We will be using the TAILQ macros to remove
exited children from the queue. For the assignment we will be working with
the zombieProc queue of the process. This queue is where children processes
register themselves when turning into zombies while exiting. Please refer to this
page for more on the TAILQ macros.

For our implementation we use two condition variables, each used to wait on
a different type of event. When calling Process_Wait with a PID of 0, we use
the zombieProcCV condition variable of the process that is making the OSWait

call. The reason is that we are waiting for a child process to be added to the
zombieProc list. In contrast, when the call waits on a specific process it calls
CV_Wait on the condition variable of that process, which will be signalled when
the process enters a zombie state.

We use the zombieProcLock of the process making the Process_Wait call
when looking for the process. Interestingly, we pass the same lock for both
CV_Wait, even though one of the calls uses the zombieProcCV field of the child
being waited on. This is another example of how each condition variable does
not correspond to a single mutex and only serves to make dropping and taking
mutexes between waits convenient.
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Algorithm 5.1: The Process_Wait code

Input: The current parent process, the PID of the child process
Output: The status of the exited process

1 Lock proc.zombieProcLock
2 if childP id = 0 then
3 while true do
4 if zombieProc not empty then
5 p← head of proc.zombieProc
6 remove head of proc.zombieProc
7 break;

8 wait on proc’s zombieProcCV

9 else
10 p← Process Lookup(childP id)
11 while p is not a zombie do
12 wait on p’s zombieProcPCV

13 remove p from proc.ZombieProc
14 Process_Release(p)

15 Unlock proc.zombieProcLock
16 status← mkStatus(p.pid, p.exitCode)
17 foreach thread ∈ proc.zombieQueue do
18 Thread_Release(thread)

19 Process_Release(p)
20 return status
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6 Testing and Submitting Your Work

We will be submitting to the test server the same way as we did for assignment
one. We use the client.py program with the same username and magic num-
ber. We only change the ASST variable from "asst1" to "asst2". Changing this
variable notifies the server that any new submissions will be run against the As-
signment 2 tests. For more details on how to submit please refer to Assignment
1’s Section 5.

NOTICE: The patch to be submitted to the server should include the
changes made to the kernel for assignment 1. Newer versions of the client.py
utility include all commited changes to the patch, but some older versions re-
quired all changes to be included in a a single commit. Please inspect the gen-
erated patch and ensure it includes all your code before submitting, including
the code for assignment 1.

We will be evaluating our work using three tests built into the CastorOS im-
age. These tests are spawnanytest, spawnsingletest, and spawnmultipletest.
The source for these tests is in the tests/ directory in the castoros repository.
We run the tests inside CastorOS from the shell the same ways we ran cat and
ls for Assignment 1.

These three tests evaluate our implementation of OSWait with different ar-
guments and number of concurrent children processes. The tests create one or
multiple children using the OSSpawn call we implemented for the previous as-
signment, then wait for them to be done using OSWait. The tests ensure that
the call executes successfully, and that its return values are correct.

All three tests require OSWait. The spawnsingletest program creates a
single child process, then waits for it to finish by calling OSWait with the child’s
PID. The test repeats this process 10 times before exiting successfully. The
spawnmultipletest program creates 10 children at once, then waits on all of
them by calling OSWait on each of their PIDs sequentially. The spawnanytest

program does the same thing but instead waits 10 times for any child to exit by
calling OSWait with the special PID value of 0.

Appendix: Linked Lists

There are two ways of coding a linked list for a data type T. The first uses an
external linked list E, a separate data structure whose every instance holds a
reference to the next element E in the list and a reference to an instance of type
T that holds the actual data:

struct E {

struct E *next;

struct T *data;

}

The external linked list approach is requires an extra allocation for every
element we add to the list and makes data management more complicated. The
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alternative approach, an internal linked list, embeds the data structure E inside
data structure T like in the case of Mutex:

struct T {

...

struct E *next;

}

This approach does not require extra allocations when inserting into a list.
The downside of internal linked lists is that struct E is polymorphic and is
dependent on struct T, but the C language’s type system does not include
polymorphism. Most operating systems use the C preprocessor-related tech-
niques to provide an internal linked list API, as is the case with CastorOS.
For more details on how internal linked lists are implemented please refer to
sys/include/queue.h that holds the definitions for the LIST_ENTRY .
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