
CS350: Assignment 1 – Loading Programs

Tavian Barnes, Emil Tsalapatis

In Assignment 0, you set up CastorOS to build successfully, but the boot process did not complete suc-
cessfully. In this assignment, you will implement the remaining boot functionality. The missing functionality
is part of the program loader that reads executable files, copies them into memory, and passes command line
arguments. Once implemented, you will be able to run simple commands like ls and cat.

1 Completing the Loader

Executable files contain a mixture of code and data. To run a program, the code and data must be loaded
from disk to memory. This is the responsibility of a program loader. There are a few popular formats for
executables, one of which is ELF [2] (Executable and Linkable Format), used by CastorOS, Linux, and BSD.

The loader does not copy an ELF binary verbatim into memory. Instead, the header at the beginning of
the file tells the loader which segments to load. Therefore, to load an ELF program, the loader must read
and interpret the header. This code is incomplete in CastorOS, so when it tries to run /sbin/init during
boot, it crashes:

$ qemu-system-x86_64 -smp cpus=1 -kernel build/sys/castor \

-hda build/bootdisk.img -nic none -nographic

SeaBIOS (version rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org)

Booting from ROM..Castor Operating System

...

loader: Jumping to userspace

CPU 0

Interrupt 14 Error Code: 0000000000000004

...

Entered Debugger!

kdbg>

Tip: Press Ctrl+A, X to exit QEMU.

1.1 Reading the Header

The first step is to read the ELF header from disk. Line 127 of sys/kern/syscall.c currently says

/* XXXFILLMEIN: Load the ELF headers into the page. */

You must fill in this code to look up the path, open the file, and read the first 1024 bytes. The VFS
(Virtual File System) APIs from sys/include/vfs.h are used to access the file system. Some of the relevant
APIs are:

1.2 Loading the Segments 1 COMPLETING THE LOADER

// Looks up a path in the file system.

// Returns a VNode on success, or NULL on failure.

VNode *VFS_Lookup(const char *path);

// Opens a file that has already been looked up.

// Returns 0 on success, -1 on failure.

int VFS_Open(VNode *fn);

// Reads ‘len‘ bytes, starting from offset ‘off‘, from an open

// file into the buffer ‘buf‘.

// Returns the number of bytes read.

int VFS_Read(VNode *fn, void *buf, uint64_t off, uint64_t len);

Use these functions to look up the path, open the file, and read the first 1024 bytes into the page of
memory pg. Unlike userspace, file handles inside the kernel are represented by the VNode object. You will
need to look up and open the file (VNode).

1.2 Loading the Segments

In this part of the assignment we need to read the ELF header, then read the program header table, and
finally load each segment. The ELF header is in the first 1024 bytes of the file (starting at 0), and you will use
it to find where the program headers are. Parsing the program headers will allow you to load the segments.

The format of the ELF header is described by this C structure (from sys/include/elf64.h):

typedef struct {

unsigned char e_ident[EI_NIDENT]; /* File identification. */

Elf64_Half e_type; /* File type. */

Elf64_Half e_machine; /* Machine architecture. */

Elf64_Word e_version; /* ELF format version. */

Elf64_Addr e_entry; /* Entry point. */

Elf64_Off e_phoff; /* Program header file offset. */

Elf64_Off e_shoff; /* Section header file offset. */

Elf64_Word e_flags; /* Architecture-specific flags. */

Elf64_Half e_ehsize; /* Size of ELF header in bytes. */

Elf64_Half e_phentsize; /* Size of program header entry. */

Elf64_Half e_phnum; /* # of program header entries. */

Elf64_Half e_shentsize; /* Size of section header entry. */

Elf64_Half e_shnum; /* # of section header entries. */

Elf64_Half e_shstrndx; /* Section name strings section. */

} Elf64_Ehdr;

Tip: You can examine the ELF header of a binary with the readelf command:

$ readelf --file-header build/sbin/init

We are specifically interested in the program headers. e_phoff tells us where they are within the file, and
e_phnum tells us how many of them there are. Each program header looks like this:

typedef struct {

Elf64_Word p_type; /* Entry type. */

2

1.2 Loading the Segments 1 COMPLETING THE LOADER

Figure 1: The ELF file header.

Elf64_Word p_flags; /* Access permission flags. */

Elf64_Off p_offset; /* File offset of contents. */

Elf64_Addr p_vaddr; /* Virtual address in memory image. */

Elf64_Addr p_paddr; /* Physical address (not used). */

Elf64_Xword p_filesz; /* Size of contents in file. */

Elf64_Xword p_memsz; /* Size of contents in memory. */

Elf64_Xword p_align; /* Alignment in memory and file. */

} Elf64_Phdr;

Tip: You can also use readelf to view the program headers:

$ readelf --program-headers build/sbin/init

Program headers with p_type == PT_LOAD specify a segment of the file to load into memory. p_offset
tells us where the segment is located in the file, and p_filesz tells us its size on disk. p_vaddr tells us where
the segment should be loaded in memory, and p_memsz tells us its size in memory. If p filesz < p memsz,
the loader should read p_filesz bytes, and set the remaining bytes to zero.

3

1.2 Loading the Segments 1 COMPLETING THE LOADER

Figure 2: The memory layout of a userspace program. The code segment holds the executable program code. The BSS holds prezeroed
variables, while the data segments are empty space created at runtime by the program itself. The kernel places the stack of each thread
in the process in a dynamically created stack segment.

The code to load all segments belongs at line 171 of sys/kern/loader.c, which currently says:

/* XXXFILLMEIN: Load the ELF segments. */

Replace this with a loop over the phdr array. For each PT_LOAD program header, load the segment from
the file, and zero the remaining bytes. These helper functions are available for you:

void LoaderLoadSegment(AS *as, VNode *vn, uintptr_t vaddr,

uintptr_t offset, uintptr_t len);

void LoaderZeroSegment(AS *as, uintptr_t vaddr, uintptr_t len);

LoaderLoadSegment will load data from the VNode to a specified virtual address, given a file offset and
length that you want to read in. LoaderZeroSegment will zero a range of memory from vaddr to length.

Tip: If you are having trouble computing the right offsets, lengths and addresses, this is a good opportunity
for kprintf debugging (see Section 4). Print and compare the values you computed with the values from
readelf to make sure everything makes sense.

4

2 PASSING ARGUMENTS

2 Passing Arguments

CastorOS doesn’t implement fork, and instead creates new processes with the spawn system call. Spawn
combines fork and exec from UNIX-like operating systems into a single call. For example, a shell will spawn
a new process for each command. The user types a command in the command line, and the shell responds
by passing the arguments over to spawn. The spawn call creates, loads and runs a new process, and the shell
waits for it to exit before returning control to the user.

Let’s take as an example an invocation of the cat shell command. The command opens all input files
and prints their contents to the terminal. If file a.txt has contents "Hello\n" and file b.txt has contents
"World\n", then:

$ cat a.txt b.txt

Hello

World

The shell receives the arguments [cat, a.txt, b.txt]. The shell then resolves the full path of cat to
/bin/cat and calls spawn:

char *path = "/bin/cat";

char *args[] = { "cat", "a.txt", "b.txt", NULL };

spawn(path, args);

The current spawn implementation copies the arguments into kernel space, but it does not copy them
back out to the new userspace process. Therefore, any shell command that uses arguments will not work.

For this part you will fill in line 158 of sys/kern/syscall.c that currently says:

/* XXXFILLMEIN: Export the argument array out to the new application. */

To finish the assignment, write the code to copy the argument strings into the new process’s address
space, so that they can be passed to the main function. Figure 3 shows an example of the desired memory
layout. The system call assumes there are up to 7 arguments and that each argument is at most 256 bytes
long, so they fit in the 4 KiB buffer allocated in Spawn.

You can find pointers to the argument strings in the arg variable. The argstart variable points to the
destination buffer. It may help to cast these variables to the appropriate types:

char **in_argv = (char **)arg + 1;

uintptr_t *out_argc = (uintptr_t *)argstart;

uintptr_t *out_argv = out_argc + 1;

char *out_args = (char *)(out_argv + 7);

Now, use a loop to copy the strings from in_argv to the output. Once you see in_argv[i] == NULL,
you have reached the end of the argument list. At that point, set *out_argc to the number of arguments.

Tip: Use strcpy or memcpy to copy in_argv[i] to out_args, then increment out_args by the number of
bytes you copied.

Warning: You cannot simply write out_argv[i] = (uintptr_t)out_args to fill in out_argv, because
out_args is a kernel pointer. Instead, calculate the equivalent userspace pointer. Look at the definition of
argstart to find the base userspace address.

5

2 PASSING ARGUMENTS

Figure 3: The layout of the arguments page in userspace. The first 8 words (64 bytes) are the argument array. The first entry holds
the number of entries in the array, the rest hold either the userspace address of an argument or NULL. We place the argument strings
themselves directly after the array. In this case our arguments are the four strings form arg1 to arg4 along with the string termination
character \0. The strings are have size 5 and are stored consecutively in the page. The pointers in the array come in multiples of 5 for
this reason.

Once you finish this assignment, upon booting CastorOS you should see a shell prompt. Try running
some commands to check that argument passing is working, for example:

Shell> echo hello world

echo hello world

Shell> ls /

boot

dev

bin

sbin

tests

LICENSE

Shell> cat /LICENSE

Copyright (c) 2013-2023 Ali Mashtizadeh

...

Unlike UNIX, our ls requires a single argument for the absolute path you wish to list.

6

4 DEBUGGING CASTOROS

3 Submitting Your Solutions

3.1 Submitting Results

Submitting Assignment 1 works just like Assignment 0. Use git commit to create a single commit with your
Assignment 1 solution, (on top of your previous commit with your Assignment 0 solution). The commit
should only include sys/kern/syscall.c and sys/kern/loader.c. If the commit includes any other
files the server will automatically reject the submission. Next, follow these steps to generate and
submit your Assignment 1 patch.

$ python client.py patch

$ python client.py submit -a asst1

The status of your submission can be monitored using the client.py status command:

$ python client.py status -a asst1

TOTAL: 9/9

Evaluated at 26/09/2024 12:00

=========END OF SUBMISSION=========

4 Debugging CastorOS

For debugging we use three tools: kprintf debugging, the kdbg kernel debugger from inside the OS, and the
GDB from outside the OS. You should select the tool based on the nature of the bug we are triaging.

4.1 Print Debugging

The simplest technique at our disposal is kprintf debugging. We add kprintf statements in the kernel to
print helpful diagnostics throughout execution. Using kprintf is quick and easy but requires changing the
code every time we want to move or change a print message. Using kprintf is also not always possible, e.g.,
during early boot.

Make sure to remove all kprintf messages from your code before you submit. The grading
scripts used to evaluate submissions read the serial console of the QEMU machine to check whether basic
shell commands like ls and cat work correctly. Leftover kprintf messages may write to the console when
these commands are being executed and cause the submission to fail the script’s tests even if it is correct.

4.2 Builtin Kernel Debugger (kdbg)

You can also use kdbg, CastorOS’s builtin kernel debugger. The main advantage of kdbg is its direct access
to kernel state. CastorOS enters kdbg either if there is a kernel crash or if we run the bkpt command from
the CastorOS terminal. If we enter kdbg using bkpt we resume execution with continue command.

Running help in kdbg gives us a list of commands we can run. Each command gives us information about
a certain part of the system, e.g. CPU state or running processes/threads. Using kdbg is ideal for bugs that
do not crash the system immediately but eventually cause problems or crashes.

4.3 GDB

Another tool at our disposal is the standard GDB debugger. QEMU allows GDB to directly attach and
debug the OS as if it was a regular process. To use GDB with CastorOS we first add the -s and -S flags

7

REFERENCES REFERENCES

when invoking QEMU [1]. These flags will make QEMU listen for connections from a local GDB instance
and also prevent it from running the OS immediately.

If you want debug symbols you will need to change the BUILDTYPE to DEBUG by editing your Local.sc
and adding BUILDTYPE=”DEBUG” to it. I would recommend removing this when you don’t need it.

qemu-system-x86_64 -s -S -nic none -m 64 -smp cpus=1 -nographic \

-kernel build/sys/castor -hda build/bootdisk.img

We use GDB by running the following command from another terminal:

(gdb) target remote localhost:1234

This command will attach the GDB instance into CastorOS running inside QEMU. Running continue

will allow CastorOS to start booting.

(gdb) continue

Please refer to one of the many GDB tutorials out there for details on how to use GDB for debugging.

References

[1] GDB usage. https://qemu-project.gitlab.io/qemu/system/gdb.html, August 2023.

[2] The ELF File Format. https://wiki.osdev.org/ELF, August 2023.

8

https://qemu-project.gitlab.io/qemu/system/gdb.html
https://wiki.osdev.org/ELF

	Completing the Loader
	Reading the Header
	Loading the Segments

	Passing Arguments
	Submitting Your Solutions
	Submitting Results

	Debugging CastorOS
	Print Debugging
	Builtin Kernel Debugger (kdbg)
	GDB

