
CS350: Operating Systems

Debugging

Ali Mashtizadeh

University of Waterloo

1 / 19



Finding and Fixing Bugs

• "An ounce of prevention is worth a pound of cure." - Benjamin Franklin

• Preventative Approaches:
I Compiler Tools
I Defensive Programming
I Static/Dynamic Analysis
I Runtime Checkers

• Debugging Approaches:
I Debuggers
I Log Debugging

2 / 19



Outline

1 Preventative Approaches

2 Debugging Approaches

3 / 19



Compiler Tools

• Compiler’s can help you avoid bugs:

• Enable warning and convert warnings into errors.
• CFLAGS=-Wall -Werror

• Don’t ignore warnings particularly:
I Uninitialized variables
I Undefined behavior

• Sometimes -Wall enables some benign warnings like unused arguments

4 / 19



Use the Language/Compiler To Detect Bugs

• Don’t initialize variables until you need to
I Allows the compiler to analyze your code
I Show you cases were you may not intend to use a default value

void foo() {
int status = 0;
...
if (...) {

status = 1;
return status;

}

return status;
}

void foo() {
int status;
...
if (...) {

status = 1;
return status;

}

/*
* Warning: use of unassigned
* local variable.
*/
return status;

} 5 / 19



Use the Language/Compiler To Detect Bugs

• Always check return values
I Ignoring return values often make debugging hard
I Happens often to students in our assignments

• Prevent developers from ignoring important results
I Example: int pthread_mutex_trylock(...)

__attribute__((warn_unused_result));
I No correct way to use trylock without checking the return value

• Disable implicit casting
I Force you to explicitly cast types and think about type safety

6 / 19



Defensive Programming: Asserts

• Use assert to check any pre-/post-conditions
I If you aren’t checking if an input is valid
I Then your assuming a condition

• You can also insert compile time checks static_assert

void foo(...) {
assert(precondition ...);

...

assert(postcondition ...);

return status;
}

7 / 19



Defensive Programming

• Avoid bool, define flags that aren’t easy to mix up
I Worse: inverting the flag in software layers
I Use enum to define explicit flags

• Use enum for switch-case statements
I Avoid default case if possible
I Compiler warns of missing enum cases

• Avoid confusing APIs
I Example: strncpy vs. strlcpy and strncat vs. strlcat
I strncpy doesn’t null terminate the string when the buffer is too small!

8 / 19

https://man.freebsd.org/cgi/man.cgi?query=strncpy
https://man.freebsd.org/cgi/man.cgi?query=strlcpy
https://man.freebsd.org/cgi/man.cgi?query=strncat
https://man.freebsd.org/cgi/man.cgi?query=strlcat


Static Analysis

• Clang Static Analyzer
• See: [KLEE], [Coverity]

9 / 19

https://rcs.uwaterloo.ca/~ali/readings/klee.pdf
https://rcs.uwaterloo.ca/~ali/readings/coverity.pdf


Runtime Checkers

#include <pthread.h>
int Global;
void *Thread1(void *x) {
Global = 42;
return x;

}
int main() {
pthread_t t;
pthread_create(&t, NULL, Thread1, NULL);
Global = 43;
pthread_join(t, NULL);
return Global;

}

• ThreadSanitizer, AddressSanitizer, ...
• See: [Eraser], [ThreadSanitizer]

10 / 19

https://rcs.uwaterloo.ca/~ali/readings/eraser.pdf
https://rcs.uwaterloo.ca/~ali/readings/threadsan.pdf


Runtime Checkers: ThreadSanitizer

% ./a.out
WARNING: ThreadSanitizer: data race (pid=19219)
Write of size 4 at 0x7fcf47b21bc0 by thread T1:
#0 Thread1 tiny_race.c:4 (exe+0x00000000a360)

Previous write of size 4 at 0x7fcf47b21bc0 by main thread:
#0 main tiny_race.c:10 (exe+0x00000000a3b4)

Thread T1 (running) created at:
#0 pthread_create tsan_interceptors.cc:705 (exe+0x00000000c790)
#1 main tiny_race.c:9 (exe+0x00000000a3a4)

• ThreadSanitizer, AddressSanitizer, ...
• See: [Eraser], [ThreadSanitizer]

11 / 19

https://rcs.uwaterloo.ca/~ali/readings/eraser.pdf
https://rcs.uwaterloo.ca/~ali/readings/threadsan.pdf


Outline

1 Preventative Approaches

2 Debugging Approaches

12 / 19



Debuggers

• Debuggers are great!

• Some classes push debuggers because it’s an important skill

• Throughout VMware and Ph.D.:
I Used debuggers to inspect crashes (rarely)
I Used log debugging for everything else
I Requires displined use of logging throughout the code

13 / 19



Effective Logging

• Basics
I Log major operations
I Turn on/off logging per subsystem
I Compile out unnecessary logs
I Timestamp every message

• Every log message should print a unique identifier (e.g., task/object)
I Use grep to quickly filter relevant events

• Dump state on a crash: register signal handlers

14 / 19



Log Debugging Pitfalls

• Three examples of what can go wrong...

• Non-maskable Interrupts, Machine Check Exceptions, etc.
• Logging, Locks and Heisenbugs

15 / 19



Log Debugging Pitfalls: NMIs

• What can go wrong?

• Logging code is fairly complex: *printf, console, and serial devices
• Can’t use Mutex locks inside of a spinlock region...

• kprintf avoids locking
• Console and serial driver implement spinlocks per character
• Similar to a Mutex, but disables interrupts.
• Unfortunately, certain interrupts cannot be disabled
• Result: thread deadlocks with itself

• Bad choices: potential for deadlocks or expose potential races
• Similar problems can happen in complex software (e.g. with signals)

16 / 19



Log Debugging Pitfalls: NMIs

• What can go wrong?

• Logging code is fairly complex: *printf, console, and serial devices
• Can’t use Mutex locks inside of a spinlock region...

• kprintf avoids locking
• Console and serial driver implement spinlocks per character
• Similar to a Mutex, but disables interrupts.
• Unfortunately, certain interrupts cannot be disabled
• Result: thread deadlocks with itself

• Bad choices: potential for deadlocks or expose potential races
• Similar problems can happen in complex software (e.g. with signals)

16 / 19



Log Debugging Pitfalls: NMIs - Solutions

• Solutions:
I Drop log messages if device locks held
I Attempt to write to device without locks
I Attempt to acquire locks using trylock
I Buffer locks in a lock-free buffer

• Both result in unreliable logging
• Probably you want to attach a debugger

17 / 19



Log Debugging Pitfalls: NMIs - Solutions

• Solutions:
I Drop log messages if device locks held
I Attempt to write to device without locks
I Attempt to acquire locks using trylock
I Buffer locks in a lock-free buffer

• Both result in unreliable logging
• Probably you want to attach a debugger

17 / 19



Log Debugging Pitfalls: Locks, Logs and Heisenbugs

• Logging infrastructure uses locks!

• Logging can:
I Serialize operations hiding data races (implicit barriers and locks)
I Change timing hiding data races

• What can you do?
I Reproduce bug with and without logging
I Look for data races

18 / 19



Log Debugging Pitfalls: Locks, Logs and Heisenbugs

• Logging infrastructure uses locks!

• Logging can:
I Serialize operations hiding data races (implicit barriers and locks)
I Change timing hiding data races

• What can you do?
I Reproduce bug with and without logging
I Look for data races

18 / 19



Log Debugging Pitfalls: Locks, Logs and Heisenbugs

• Logging infrastructure uses locks!

• Logging can:
I Serialize operations hiding data races (implicit barriers and locks)
I Change timing hiding data races

• What can you do?
I Reproduce bug with and without logging
I Look for data races

18 / 19



Summary

• Logs can be reordered if there’s buffering
• Logging can deadlock or be dropped silently
• Logging can hide races (it slows you down)

19 / 19


	Preventative Approaches
	Debugging Approaches

