
CS350 Operating Systems Winter 2005

Assignment Three

1 Nachos File Systems

Nachos has two file system implementations. As provided to you, Nachos uses the stub file system imple-
mentation, which simply translates Nachos file system calls to UNIX file system calls. This is the file system
implementation that you have been using for the first two assignments. Nachos also comes with a very basic
file system implementation that uses the Nachos simulated disk. For Assignment 3, your task is to improve
on this basic implementation.

Your first task will be to switch over from the stub file system implementation (which will no longer be
used) to the basic file system that uses the Nachos disk. To use this file system, you will need to rebuild
Nachos. First do a

make distclean

in your build directory. Then, edit Makefile so that the symbol FILESYS STUB is no longer defined. Do this
by changing the line

DEFINES = -DRDATA -DSIM FIX -DFILESYS STUB -DRR QUANTUM

to

DEFINES = -DRDATA -DSIM FIX -DRR QUANTUM

Don’t forget to add in -DUSE TLB to this list if you wish to continue using the TLB as you did for Assignment
2. Once this is done, you should rebuild Nachos by running make depend followed by make nachos as usual.

The internal file system interface used by the new, basic file system implementation is almost the same
as the interface used by the stub file system. However, they are not exactly the same. For example,
FileSystem::Create takes one parameter in the stub file system interface, and two parameters in the new
basic file system interface. You will need to study the header files in the filesys directory to identify the
other differences in the interface. Because of these differences, you may need to make a few changes to your
existing file-related system call (e.g., Create, Open) implementations to get Nachos to compile with the new
file system.

Once Nachos is no longer using its stub file system, you will also notice that the behavior of the system
will change. For example, you will no longer be able to simply run:

nachos -x ../test/halt

Why? Because Nachos is now looking for the halt executable file in the Nachos file system. The halt file
is not there; it is in the UNIX file system.

To run the halt program, or any other program, you will first need to load the program into the Nachos
file system. Then you will be able to run it. For example, you might run:

nachos -f -cp ../test/halt halt -x halt

This command will format the Nachos disk and initialize an empty file system on it (the -f flag), copy the
halt program from the UNIX file system into the Nachos file system (the -cp flag), and then execute the
halt program from the Nachos file system. The -cp flag, of course, is somewhat unrealistic since it allows
you to load files into the Nachos file system from “outside”. However, since you create Nachos NOFF files
on UNIX machines, such a facility is necessary if you are to run those files on Nachos.

You may want to load a number of programs or files into the Nachos file system over and over again
(e.g.,when recompiling your test programs.) To do this, it is convenient to put the relevant Nachos commands

1



into a script that can be executed with one command. Probably the simplest way is to put the commands into
a text file called reload (one Nachos command per line) and run the script with the command “sh reload”.

There are a number of other file system-related utilities you can run from the Nachos command line. For
example, there are utilities that will allow you to display the contents of a Nachos file, to delete Nachos files,
and to list the contents of the Nachos directory. See the file threads/main.cc for a complete list of the
available Nachos command line parameters.

Note that you must format the Nachos disk before you can store any files on it for the first time. Failure
to do so will result in errors. Formatting the disk erases anything previously stored on the disk and creates
a new, empty file system.

2 File System Design Requirements

The specific requirements for this assignment are as follows:

1. Ensure that the file-related system calls Create, Open, Close, Read and Write system calls work
properly with the basic file system. These calls are already implemented. However, as was noted in
Section 1, the new, basic file system’s interface is not quite the same as the interface used by the stub
file system. As a result, you may have to make some small changes to make these system calls work.

Note that it should still be possible to use the Read and Write system calls to perform console I/O.

2. Implement the Remove(char *filename) system call, which is used to delete files.1 When a file is
removed, processes that have already opened that file should be able to continue to read and write the
file until they close the file. However, new attempts to open the file after it has been removed should
fail. Once a removed file is no longer open by for any process, the filesystem should actually remove
the file, reclaiming all of the disk space used by that file, including space used by its header.

3. Implement the GetFileLen system call, which returns the length, in bytes, of an opened file.

4. Implement the Seek system call. Each time a file is opened, NachOS returns an OpenFileId to the
calling process. There should be a separate file (seek) position associated with each such OpenFileId.
The Read and Write system calls modify this position implicitly, while the Seek system call lets a
process explicitly change an open file’s seek position so it can read or write any portion of the file.

5. Modify the file system so that it will support files as large as 64 Kbytes. (In the basic file system,
each file is limited to a file size of 3840 bytes.) You should have some ideas from class as to how to
accomplish this.

6. Implement a mechanism to allow files to grow. A file should grow when a process tries to Write beyond
the end of the file. In either case, the file should grow enough to accommodate the Write operation
that causes the growth. Of course, a file should not be allowed to grow larger than the maximum file
size supported by the system, or beyond the available capacity of the disk.

Note that Read and Seek calls should not cause a file to grow. A Read beyond the current end of the
file must return an end-of-file indication as described in userprog/syscall.h. A Seek beyond the
current end of the file must return an error.

7. Implement named pipes. The system call CreatePipe(char *name) is used to create a named pipe.
If a pipe with the specified name does not already exist, the kernel should create one. If a pipe with
the specified name already exists, this call should succeed, but needn’t do anything. The system call
RemovePipe(char *name) is used to delete the specified pipe, destroying any data that may remain
in the pipe. RemovePipe’s behaviour should be similar to Remove’s: if any processes have the pipe
opened at the time that is is removed, those processes should be able to continue using the pipe until
they close it. However, no further opens of the pipe should be allowed. Once all such processes have
close the pipe, the pipe and any data that remain in it can be deleted.

1
Remove was also implemented as part of Assignment 1, but this implementation adds some additional requirements.

2



Once created, named pipes are used by way of the existing Open, Read, and Write, and Close system
calls. The data written to a named pipe should be organized (conceptually) as a FIFO queue. A Write

call appends data to the back of the queue. A Read call consumes data from the front of the queue.
If a Read call requests k bytes of data from a pipe when the pipe contains fewer than k bytes of data,
then the Read call should block until k bytes of data are available. Furthermore, each pipe should have
a maximum capacity of 256 bytes. If a Write system call attempts to write k bytes of data into a
pipe which does not have sufficient free capacity to hold that much data, then the Write system call
should block until there is space available in the pipe for all k bytes. (Note, however, that an attempt
to read or write more than 256 bytes of data from/to a pipe in a single system call should result in an
immediate error, since waiting will never allow such a request to succeed.)

Named pipes should be persistent, like files. Furthermore, pipe names should be treated like file names:
when a named pipe called “foo” is created, the pipe’s name should appear in the file system directory.
Since both file names and pipe names appear in the same directory, they may conflict: at any time,
your system may have a file named “foo” or a pipe named “foo”, but not both. Furthermore, if a “foo”
entry appears in the directory, your system must have some way of determining whether it refers to a
file or to a pipe. Unlike regular files, however, pipes are not expandable beyond their fixed maximum
size of 256 bytes. Furthermore, the Seek and GetFileLen system calls should not work with named
pipes. An attempt to use either call on a named pipe should result in an error.

3 Getting Started

Your first step should be to switch from the stub file system to the basic Nachos file system implementation,
as described in Section 1. Next, read and understand the basic file system implementation, as it will be your
starting point. The files to focus on in the filesys directory are:

filesys.h, filesys.cc — top-level interface to the file system.

directory.h, directory.cc — translates file names to disk file headers; the directory data structure is stored
as a file.

filehdr.h, filehdr.cc — manages the data structure representing the layout of a file’s data on disk. This is
the Nachos equivalent of a UNIX i-node.

openfile.h, openfile.cc — translates file reads and writes to disk sector reads and writes.

synchdisk.h, synchdisk.cc — provides synchronous access to the asynchronous physical disk, so that threads
block until their requests have completed.

Some of the data structures in the Nachos file system are stored both in memory and on disk. To provide
some uniformity, all these data structures have a “FetchFrom” procedure that reads the data off disk and
into memory, and a “WriteBack” procedure that stores the data back to disk. Note that the in memory and
on disk representations do not have to be identical.

You may implement Assignment 3 directly on top of the base NachOS code that you can download
from the course account. Alternatively, you may build on the code that you developed for Assignment 1
or Assignment 2. If you are building on NachOS from Assignment 2, it is important to remember that the
NachOS simulated machine includes two simulated disks, Kernel::swapDisk and Kernel::synchDisk. The
former is used as backing storage by your virtual memory system. The latter is used to hold the file system.

4 Extra Credit: NachOS Networking

It is possible to run two (or more) copies of the Nachos simulated machine, and to have those machines
exchange messages over a simulated network. The easiest way to do this is to create two windows, and to
run nachos in both windows. (You can also start two copies of nachos in one window by running the first
copy in the background.) Make sure that you are logged in to the same machine in both windows, and that

3



your current directory is the same in both windows. Otherwise, the two nachos machines will be unable to
communicate.

Each communicating nachos machine must have a unique numeric address. You assign an address to a
nachos machine using the -m command line argument. For example,

nachos -m 0

will start a new nachos machine with address zero. If you start several nachos machines and you expect
them to communicate properly, you must assign a different address to each machine.

Nachos simulates a network using UNIX-domain sockets. Nachos will create one such socket for each
machine. It binds the name SOCKET ? to the socket, where ‘‘?’’ is the numeric address of the machine.
When nachos terminates normally, it deletes its socket. If nachos terminates abnormally, it may be unable
to clean up properly, and you may notice sockets lying around in your directories. You can remove these
using rm, just as you would remove a file.

The nachos kernel provides an initial implementation of a post office. Each machine’s post office provides
synchronous delivery and receipt of messages to/from mailboxes. Each machine has one post office, and each
post office contains multiple mailboxes.

Nachos provides a simple test routine you can use to run a two-machine test of the post office (and the
network). This test can be invoked using the ‘‘-N’’ command line flag. Specifically, you should execute
the command

nachos -m 0 -N

in one window, and the command

nachos -m 1 -N

in another. This will create two nachos machines, one with address zero, the other with address one, which
will run the simple network test together. Note that the two machines must be launched at approximately
the same time, otherwise they may fail to properly establish the networking simulation.

The initial NachOS post office facility is very restricted: it is not robust to packet loss, it only supports
small datagrams, and there is no system call interface through which it can be used by application pro-
grams. For extra credit, make an interesting improvement to the existing post office facility. Here are some
suggestions:

• Implement a network communication protocol that will make the NachOS post office reliable in the face
of network packet loss. The -n and -rs command line arguments control packet loss in the NachOS
network simulation. The former is used to specify the probability of that packets will be lost, the latter
specifies the random seed for the pseudo-random number generator.

• Generalize the post office so that it can support datagrams that are larger than the packets supported
by the underlying network, or so that it can support a stream model of communication.

• Design and implement a system call interface that will allow application programs to communicate
across the network.

If you don’t like these suggestions, feel free to come up with your own project of approximately the same
scope as the ones suggested above.

A maximum of 10 extra credit marks are available for working on this part of the assignment. To
obtain marks, your design document must describe what you have done and how you have done it. You may
include up to one additional page in your design document (for a total of 4 pages) to account for this. This
additional page must be devoted to a description of your extra credit work - you may not use this additional
space to expand the description of your file system design. In addition, you are expected to supply text
programs (as you do for the main part of the assignment) that demonstrate your implementation. Design,
implementation, and test must all be present in order for you to obtain any extra credit marks.

Since Assignment 3 is worth 10% of your course mark, extra credit will affect your final course grade by
at most 1 point. The extra credit work is intended for those who’d like to try out NachOS networking. You
should feel free to skip it.

4


