
University of Waterloo
Midterm Examination Model Solution

Winter, 2005

1. (10 marks)
Given the following atomic swap operation for two boolean variables, write pseudocode that can be
used to protect a critical section.

void Swap(boolean *a, boolean *b) {
boolean temp = *a;

*a = *b;

*b = temp;

}

Your solution should include the following three parts, each of which should be clearly labeled:

Part 1: declarations of any variables used, for those variables

Part 2: code to be executed by a thread before it enters the critical section,

Part 3: code to be executed by a thread after it leaves the critical section.

For any variable declared in Part 1, you must indicate whether it is a shared variable or a variable that
is private to each thread. In addition, you must specify the initial value of each variable.

// Part 1

boolean lock = false; // shared variable

boolean key = true; // private (per thread) variable

// Part 2

key = true;

while (key == true) {
Swap(&lock,&key);

}

// Part 3

key = false;

Swap(&lock,&key);

2. (10 total marks)

Suppose that two processes, P1 and P2, are running in a system. Each process requires C units of
execution time to complete its program. Neither program performs any system calls that might cause
it to block, and there are no other processes in the system.

The system uses a preemptive, round-robin scheduler with a quantum of q. Each context switch (from
one process to the other) involves some overhead. Let w (w < q) represent the amount of overhead
per context switch.

a. (4 marks)
Suppose that both processes become runnable at time t = 0, and the scheduler chooses P1 to
run first. Let N1 denote the number of times that P1 will be preempted before it completes the
execution of its program. Give an expression for N1 in terms of q, w, and C.

N1 = b
C

q − w
c

CS350 1 of 7



b. (3 marks)
Let t1 denote the time at which P1 completes the execution of its program. Give an expression
for t1 in terms of N1, q, w, and C. (Note: N1 is the preemption count that you determined in
part (a). If you did not get part (a), just answer this part of the question assuming that N1 is
known.)

t1 = 2qN1 + C mod (q − w)

c. (3 marks)
Let t2 represent the completion time of process P2, and let ∆ = t2 − t1. Give an expression for ∆
in terms of q, w, N1, and C.

∆ = C mod (q − w) + w

3. (12 total marks)

a. (5 marks)
Consider the following list of actions. Put a check mark in the blank beside those actions that
should be performed only by the kernel, and not by application programs.

• X changing the contents of a page table entry

• changing the value of the program counter (PC)

• reading the value of the program counter (PC)

• changing the value of the stack pointer (SP)

• X changing the contents of a TLB entry

• executing a system call instruction

• X changing the contents of the page table base register

• X changing the contents of the page table limit register

• X halting or rebooting the computer

b. (2 marks)
What are the key differences between a user-level thread and a kernel thread?

User-level threads may be less expensive to use, as they do not require system
calls to create, yield, or destroy. User-level threads are not known to or
controlled by the kernel.

c. (2 marks)
What is the difference between an exception and an interrupt?

Exceptions are caused by instructions being executed by the currently run-
ning process. Interrupts are caused by hardware devices.

d. (3 marks)
Consider a system that implements simple paging, using a hardware controlled TLB. In such
a system, the responsibility for translating virtual addresses to physical addresses is shared by
hardware and the kernel. Briefly describe the responsibilities of each (with respect to address
translation).

The hardware is responsible for searching the TLB to find translations. In
case of a TLB miss, the hardware is also responsible for finding the appropri-
ate entry from the process page table and loading it into the TLB, and for
generating an exception if that entry is not valid.
The operating system is responsible for setting up and managing the contents
of the page tables, and for handling any exceptions generated by the hardware.

CS350 2 of 7



4. (10 total marks)
Consider a NachOS system in which k (k > 1) processes are running. One process is running at low
priority, and the remaining k − 1 processes are running at normal priority. Each process’ program is
described by the following pseudo-code:

REPEAT 5 TIMES {
compute for C time units
write a single character to the NachOS output console

}

Characters are written to the synchronous output console using the NachOS Write system call. The low
priority process writes the character “L”. The normal priority processes write the character “N”. The
synchronous output console outputs characters one at a time in the order in which the Write requests
are made. Assume that that output console requires W time units to output a single character.

Assume that the NachOS scheduler is a round robin preemptive scheduler with quantum q that has
been modified to understand priorities, as was required for Assignment 1. Specifically, a lower priority
process will never run if there is a runnable process of higher priority.

For the purposes of this question, ignore context switching overhead.

a. (5 marks)
Suppose that k = 2 and C < W . Under this assumption, what is the sequence of N’s and L’s that
will be produced on the output console by the processes? Explain your answer.

NLNLNLNLNL

Key:

process is running

ouput character is being written

high priority process

low priority process

C C

C W

W

the pattern in this window repeats

time

b. (5 marks)
Suppose that k = 3 and W < C < q. Under these assumptions, what is the sequence of N’s and
L’s that will be produced on the output console by the processes? Explain your answer.

NNNNNNNNNNLLLLL

Key:

process is running

ouput character is being written

high priority process

high priority process
C W

C

WC

WCW

time

the pattern in this
window repeats

Note: since there is always a runnable high priority process, the low priority process will run
once both high priority processes have finished

CS350 3 of 7



5. (8 total marks)
Give an example of a resource allocation graph that includes a cycle, yet does not have a deadlock.
Briefly explain why your example does not have a deadlock. Keep your example simple – unnecessarily
complex answers will be penalized.

R1 R2

P1 P2 P3

There is no deadlock in this graph because the processes can finish as follows.
P1 finishes, releasing an instance of R1. P2 acquires the released instance of R1
then finishes, releasing instances of R1 and R2. P3 acquires the instance of R2
and then finishes.

CS350 4 of 7



6. (10 total marks)
The local laundromat has just entered the computer age. As each customer enters, he or she puts coins
into slots at one of two stations and types in the number of washing machines he/she will need. The
stations are connected to a central computer that automatically assigns available machines and outputs
tokens that identify the machines to be used. The customer puts laundry into the machines and inserts
each token into the machine indicated on the token. When a machine finishes its cycle, it informs
the computer that it is available again. The computer maintains an array available[NMACHINES]
whose elements are non-zero if the corresponding machines are available (NMACHINES is a constant
indicating how many machines there are in the laundromat), and a semaphore nfree that indicates how
many machines are available. The available array is initialized to all ones, and nfree is initialized to
NMACHINES. The code to allocate and release machines is as follows:

binary semaphore lock = 1; // code added for part (b)

int allocate() { /* Returns index of available machine.*/

int i;

P(nfree); /* Wait until a machine is available */

P(lock); // code added for part (b)

for (i=0; i < NMACHINES; i++) {
if (available[i] != 0) {
available[i] = 0;

V(lock); // code added for part (b)

return i;

}
}

}

release(int machine) { /* Releases machine */

P(lock); // code added for part (b)

available[machine] = 1;

V(lock); // code added for part (b)

V(nfree);

}

a. (4 marks)
It seems that, if two people make requests at the two stations at the same time, they will occa-
sionally be assigned the same machine. This has resulted in several brawls in the laundromat,
and you have been called in by the owner to fix the problem. Assume that one thread handles
each customer station. Explain how the same washing machine can be assigned to two different
customers.

A problem can arise if there is a context switch just before available[i] = 0.
Each thread tests whether a washer is free and then claims it if it is free.
However, the test-and-claim is not atomic. A context switch after the test
may cause two threads to claim the same washer.

b. (6 marks)
Clearly describe how to modify the code above to eliminate the problem. Feel free to denote your
changes directly on the code shown above.

Answer has been included in the code above.

CS350 5 of 7



7. (8 total marks)
A system implements paging using a page size of 4096 (212) bytes. Page tables for only two of several
executing programs (Program A and Program B), are shown below. They represent part of the state
of the system prior to the execution of the instructions that generate the address translations used in
this question. Note that VPN refers to the virtual page number and PFN refers to the corresponding
physical frame number. D, U, V, and RO are the dirty, use, valid and read-only bits, respectively.
(The D and U bits are not used in this question.)

0

1

2

3

4

0 0

000

00

0

0

1

0

10

ROVUD

0

1

2

3

4

VPN

Page Table A

PFN

5

7

000

1

0 1 1

ROVUD

0

1

2

3

4

5

6

7

VPN

Page Table B

0

1

2

3

4

5

6

7 1

PFN

0

3

2

1

1

0

1

1

011

00 1

5

0 100

7 0 0 0 1

5

5 000

3 0 0 0 0

0

6

0

1 1 1 0

1

The following unordered subset of physical address translations (shown in hexadecimal) was produced
without generating any page faults or other exceptions. For each shown physical address, give
the original virtual address whose translation resulted in that physical address. Specify the virtual
addresses in hexadecimal. Also indicate which program was running when the address was referenced,
and indicate whether the specified address was being accessed with a read. If the information being
requested can not be determined from the information provided write “unknown”.

Physical Address Virtual Address Program (A or B) Read?

0x7c8c 0x3c8c A yes

0x5231 0x1231 B unknown

0x0000 unknown unknown unknown

0x5238 0x1238 B unknown

0x2f38 0x0f38 B yes

0x1008 0x7008 B unknown

0x3cd1 unknown unknown unknown

0x6109 0x3109 B unknown

CS350 6 of 7



8. (12 total marks)
Consider the following system call interface:

int ThreadFork(void (*func)(int), int arg);

The ThreadFork system call creates a new thread in the same address space as the calling thread. The
new thread initially runs the function func, which is passed a single parameter arg.

Sketch how you would implement this system call in a system similar to NachOS. Ideally, your answer
should consist of the major steps that the kernel’s handler for the ThreadFork system call would need
to implement the call. Details, such as the actual names of particular variables or data structures from
the NachOS system, are not required.

• Create a new (kernel) thread. Add it to the ready queue.

• Increase the size of the process’s address space (or choose an unused part of
the address space) to create a stack for the new thread.

• Update the process info (e.g., the process table) to indicate that the process
has another thread.

• Initialize the new thread’s stack and create an initial register context for the
new thread.

9. (10 total marks)
Consider a virtual memory system that uses pure segmentation (no paging). The system provides each
process with up to 16 segments, each of which may be as large as 128 megabytes (227 bytes). The
system supports physical memories as large as 4 gigabytes (232 bytes).

a. (2 marks)
How many bits does a virtual address have in this system?

31 bits, including 4 bits for the segment ID and 27 bits for the offset into the
segment.

b. (4 marks)
What fields will be found in each entry of a segment table in this system? Describe the purpose
of each field, and indicate how large (number of bits) each field must be.

segment length: 27 bits, indicates the size of the segment

segment base: 32 bits, indicates the physical address of the beginning of the
segment.

flags: 1 bit each, e.g., a dirty flag, a use flag, protection flags, a valid flag.

c. (2 marks)
What is the maximum size (in bytes) of a segment table in this system? Briefly justify your
answer.

27 bits (length) plus 32 bits (base) is 59 bits per segment. The use of 8 bytes
(64 bits) per segment would leave 5 bits per segment for flags. There can be
at most 16 segments, so the total size of the segment table would be 16∗8 = 128
bytes.

d. (2 marks)
How many memory references must this system’s MMU make in order to translate a virtual
address to a physical address?

At least one memory reference will be required, to read the segment table
entry. If a single read retrieves 4 bytes (as would be true on a 32-bit machine),
two reads would be required to read an 8 byte segement table entry. Note
that this does not include the cost of reading (or writing) the contents of the
physical address that results from the translation.

CS350 7 of 7


