
 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Virtual and Physical Addresses

Physical addresses are provided by the hardware:
● one physical address space per machine;
● valid addresses are usually between 0 and some machine-

specific maximum;
● not all addresses have to belong to the machine's main memory;

other hardware devices can be mapped into the address space.

Virtual (or logical) addresses are provided by the OS kernel:
● one virtual address space per process;
● addresses may start at zero, but not necessarily;
● space may consist of several segments (i.e., have gaps).

Address translation (a.k.a. address binding) means
mapping virtual addresses to physical addresses.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

A Simple Address Translation Mechanism

● OS divides physical memory into partitions. Different partitions can
have different sizes.

● Each partition can be given to a process as virtual address space.

● Properties:
● virtual address == physical address;
● changing the partition a program is loaded into requires

recompilation or relocation (if the compiler produces
relocatable code);

● number of processes is limited by the number of partitions size
of virtual address space is limited by the size of the partition.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

A Simple Address Translation Mechanism

This is really not a good solution!

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Dynamic Relocation

● The memory management unit (MMU) of the CPU contains a
relocation register.

● Whenever a thread tries to access a memory location (through a
virtual address), the value of the relocation register is added to the
virtual memory address – dynamic binding.

● The kernel maintains a separate relocation value for each process
(as part of the virtual address space); changes the relocation
register at every context switch.

● Properties:
● all programs can start at virtual address 0;
● the kernel can relocate a process w/o changing the program;
● kernel can allocate physical memory dynamically;
● each virtual address space is still contiguous in physical mem.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Dynamic Relocation

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Dynamic Relocation

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Segmentation

In some systems, a virtual address space can consist of several
independent segments.

A logical address then consists of two parts:

(segment ID, address within segment)

Each segment
● can grow or shrink independently of the other segments in the

same address space;
● has its own memory protection attributes.

A process may have separate segments for code, data, stack.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Segmentation

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Paging

● Each virtual address space is divided into fixed-size chunks called
pages.

● The physical address space is divided into fixed-size chunks called
frames.

● Pages have same size as frames.
● The kernel maintains a page table (or page-frame table) for each

process, specifying the frame within which each page is located.
● The CPU's memory management unit (MMU) translates virtual

addresses to physical addresses on-the-fly for every memory
access.

● Properties:
● relatively simple to implement (in hardware);
● virtual address space need not be physically contiguous.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Paging

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Paging

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Combining Segmentation and Paging

Segmentation and paging can be combined so that a virtual address
space consists of multiple segments, and each segment consists of
multiple pages.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Combining Segmentation and Paging

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Physical Memory Allocation

How to allocate physical memory?

Physical memory can be allocated in different ways.

Variable allocation size:
● always give a process exactly as much memory as it requests
● space tracking and placement are very complex
● placement heuristics are necessary: first fit, best fit, worst fit
● risk of external fragmentation

Fixed allocation size:
● allocate memory in fixed-size chunks
● space tracking and placement are very simple
● risk of internal fragmentation

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Memory Protection

Ensure that each process can only access the physical memory that
its virtual memory is bound to.

What if a thread tries to access memory outside its own virtual
address space?

MMU limit register is used to check every memory access:
● for simple dynamic relocation, the limit register contains the

maximum virtual address of the running process;
● with paging, the limit register contains the maximum page

number for the running process.

MMU generates exception when a thread is trying to access a
memory address beyond this limit.

(In Nachos: AddressErrorException)

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Memory Protection

In addition, access to certain portions of the address space may
be restricted:

● read-only memory

● execute-only memory

When paging is used:

● the page table includes flags that define the permitted access
modes for each page;

● MMU raises exception when permissions are violated (e.g., thread
tries to write to read-only page).

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Memory Management: Roles of OS and MMU

MMU (Memory Management Unit, part of CPU):
● translates virtual addresses to physical addresses;
● checks for protection violations;
● raises exceptions when necessary (e.g., write operation on read-

only memory region).

Operating system:
● saves/restores MMU state during context switch (limit register,

page tables, ...)
● handles exceptions raised by the MMU
● manages and allocates physical memory

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Address Translation

Executing a single machine instruction may involve one or more
memory access operations: One to fetch the instruction; zero or
more to fetch the operand(s).

● Simple dynamic relocation with relocation register does not affect
the total number of memory operations.

● Address translation through a page table doubles the number of
memory operations: Every memory access is preceded by a page
table lookup.

⇒ A simple page-table-based address translation scheme can cut
the execution speed in half.

⇒ More complex translation schemes might result in an even
more severe slowdown.

Solution: Use a cache!

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Translation Lookaside Buffer

● The Translation Lookaside Buffer (TLB) is a fast, fully-associative
address translation cache in the MMU.

● A TLB hit avoids a memory access due to page table lookup caused
by a virtual memory access.

● Each entry in the TLB contains a pair of the form

(page number, frame number)

 and some additional data, such as protection bits.

● The TLB is on the CPU; a TLB access is much faster than a memory
access.

● If the entry for a given page cannot be found in the TLB, the page
table has to be queried and an entry in the TLB is replaced.

● In most systems, this is all done by the MMU; in
Nachos, this is done inside the kernel (your code).

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Shared Virtual Memory

Virtual memory allows address spaces to overlap (shared memory):

Two or more processes share the same physical memory.

Shared memory:
● allows to use memory more efficiently (e.g., when loading more

than one copy of the same program into memory)
● is a mechanism for inter-process communication (IPC).

The unit of sharing can be a page or a segment.

Shared memory in UNIX:
shmget (create a new shared memory region or obtain a handle to
an existing one); shmat (attach to an existing shared mem. Region);

shmdt (detach), shmctl (change attributes, delete)

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Kernel Address Space

There are several possibilities to include the kernel into the bigger
memory management picture.

● Kernel in physical address space – disable MMU in kernel
mode, enable MMU in user mode; to access process data, the
kernel must interpret page tables without hardware support; OS
must always be in physical memory (memory-resident).

● Kernel in separate virtual address space – MMU has separate
state for user mode and kernel mode; accessing process data is
rather difficult; parts of the kernel data may be non-resident.

● Kernel shares virtual address space with each process – use
memory protection mechanisms to isolate kernel from user
processes; accessing process data is trivial; parts of the kernel
data may be non-resident.

 CS350 – Operating Systems
University of Waterloo, Fall 2006

Stefan Buettcher
<sbuettch@uwaterloo.ca>

D – Memory Management

Kernel Address Space

Most common solution:
Kernel shares address space with each process.

Disadvantage:
Less space for user space processes (parts of the virtual address
space are occupied by the kernel). On 64-bit systems, this is not a
problem. On 32-bit systems, it might be.

Under 32-bit Linux, the kernel traditionally gets 1 GB of the total
address space; the other 3 GB are for the user process.

When kernel shares address space with user process: Trying to
access kernel data does result in protection violation, not in invalid
address exception.

